%i‘,li}"i;, S o e S T R P S S A PR gt 0.~ W TSI e o 0wt v o meme B

* 1
AD-AQ016 662

A RESEARCH PROGRAM IN COMPUTER TECHNOLOGY

University of Southern California

Prepared for: -‘\\

Defense Advanced Research Projects Agency

September 1975

DISTRIBUTED BY:

.
: National Technical Information Service
i U. S. DEPARTMENT OF COMMERCE ,
A $

311131

ARPA ORDER NO. 2223
ISI/SR-75-3

ANNUAL TECHNICAL REPORT
May 1974 - June 1975

A Research Program
in Computer Technology

prepcred for the
Advanced Research Projects Agency

-3

k. L

x N,
% e
[v
: .€§
3 2

¥
= 8
b N %
3 S5 Y
3 ¢
e !
25 |
2

,

,
~ gy: E
o - ' . 5
2% ' &
B . 3
o Fr : 3
by: %:': P { \ 8
g 4 . 3
O - : €
E; ,“N’ L3y R
g A P N . :
. LN Vi 3
: . T 3
; ?}I 'w . "’4'1- .':‘;1 B
handh RO NS S d‘j L‘.z’ e |
"\ T ’ﬁ
&3 P n

Reprc sucnd by

K NATIONAL TECHNICAL
] INFORMATION SERVICE

US Depadmert of Commarca
Spnnghield, VA 22151

nt

AR

INFORMATION SCIENCES INSTITUTE -

A G6™6 Admnalty Way[Mavma del Rey [Caltfos nza 90201
3 UNIVLRSITY 61 SOUTHIRN CALIFORNLA (203) 8221511

IR TP S A R -5 7

P Ve A wee v P

Sei]

UNCLASSIFIED

. 8
v 2
5 § SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
S READ INSTRUCTIONS
§ : REPORT DOCUMENTAT'ON PAGE BEFORE COMPLETING FORM
. \. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
R
. s ISI/SR-75-3
2 b-d
E t 4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
=) Arnual Technical Report
c = A Research Program in Computer Technology, May 1974 - June 1975
. i AnnUOI TeChnlCOI Reporf, MGY]974“M0y 1975. 6. PERFORMING ORG. REPORT NUMBER
.
A H
o *:"' 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBLR(s)
“ IS1 Research staft DAHC 15 72 C 0308
A 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
3 USC/Information Sciences Insitute AFEA & WORK UNIT NUMBERS
4676 Admiralty Way ARPA Order #2223
5 Marina del Rey, CA 90291 Prograr Code 3D30 & 3P10
& n. CONTFJLLANG OFFICC NAME AND ADORESS 12, REPORT DATE
o Defense Advanced Research Projects t.gency September 1975
& 1400 Wilson Blvd. 13. NUMBER OF PAGES
i Arlington, VA 22209 5;
)‘f 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Oflice) . SECURITY CLASS. (ol?m“aport)
[
————— Unclassified
? 15a, DECLASSIFICATION/ DOWNGRADING
- SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report)
This document is approved for public release and sale; distribution unlimited.
'}g
>
!\;: 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If ditferent from Report)
y
,;r - o -
5
¢ 18. SUPPLEMENTARY NOTES
i

19. KEY.WORDS (C?nunua on reverse eide l.l necessary and ldentity by block number)
1: interactive theorem proving, lemma generator, Pascal, program correctness, program

verification, Reduce, symbolic executor, verification condition.

2: ARPANET, control memory, microprogrammed processor, microproegramming,
microprogramming language, microvisor, MLP-900, operating systems, esource sharing,
TENEX, time sharing, writable control memory. (OVER)

20. ABSTRACT (Continus on reverse side {f necessary and identlfy by block number)
This report summarizes the research performed by USC/Information Sciences Institute from

1. May 1974 to 30 June 1975. The research is aimed af applying computer science and
technology to problem areas of high DoD/military impact. The IS} program consists of

eight res~arch areas: Program Verification ~ logical proof of program vaiidity; Programmirng
Research Insirument - development of a major time-shared microprogramming facility;
Automatic Programming - the study of acquiring and using problem knowledge for program

TonChXARs N 305 Ao 3 o5 % Imad o lh et AL e

generafion; Profection Analysis - methods of assessing the viability of security ~ (OVER)
: FORM
DD , ax 73 1473 EDITION OF 1 NOV 6515 OBSOLETE o UNCL_ASSIFIED
S/N 0102-014-6601 |.
SECURITY CLASSIFICATION GF THIS PAGE (When Data Entered)

ST S bk,

A R =~ e~
RS B S S S oS P I A L e b

—_UNCLASSIFIED

SECUR-""Y CLASSIFICATION OF THIS PAGE(When Date Entered)

19. KEY WORDS (continued)

3: automatic programming, domain-independent interactive system, natural langiage,
nonprocedural language, nonprofessional computer users, problem solving, prcblem
specification, process transformation, world knowledge.

4: access control, computer security, encapsulation, error anclysis, error-driven eval-
uation, error patterns, evaluation methods, protection mechanisms, softv.are security,
verification,

5: computer temminals, interactive message service, office automation, nonprofessional
computer users, terminal-based message service.

6: computer network, digital voice communication, network conferencing, packet-

switched networks, secure voice transmission, signal processing, speech processing,

vocoding.

document printing capability, network teminal, text printing, Xerox Graphics Printer]

ARPANET interface, computer network, K¥A/KI, PDP-10, PDP-11/40, resource

aliocation, TENEX, user quotas.

2N

20, ABSTRACT (continued)

mechanisms of operating systems; Information Automation - development of a user-oriented
message service for large scale military requirements; Network Secure Communication -
work on low~-bandwidth, secure voice transmission using an asynchronous packet-switched
network, Special Projects - primarily further development of Xerox Graphics Printer
facilities; ARPANET TENEX Service - operation of TENEX service and continuing
development of advanced support equipment.

10

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dute Entered)

3
3
g
<
3
s
|
]
ks_\. O T 2 P OSSR PRI 0 PLCO S DRI . 0. o 9.0 1YY

ARPA ORDER NG. 2223
iSI SR-75-3

ANNUAL TECHNICAL REPORT
May 1974 - June 1975

TR v
A 0

ESa AT

A Research Program
in Computer Technology

prepared for the
Advanced Research Projects Agency

AL AT 2, 2 AR MOSITYETY

7 Ctfective date of contract

17 May 1972

Contract expiration date

30 June 1975

! Amount of contract

$7,661,344

Principal investivator
Keith W. Uncapher
(213) 822-1511

Co-princizal investigator
Thomas 0. Ellis
(213) 822-1511

2
b

Y 3
; i
. 3
3 .
- ’,
; K
4 . *3
3 INFORMATION SCIENCES INSTITUTE 4
G670 Admnalty ulh\/,\l.n'm.ld('/ Re]/(.dflfllﬂll.l 9021 3

UNIVLRSHTY of SOUTHIRN AL ORNLA (215)82 18] E

H

’ 1
THI™ RESEARCH 18 SUPPORTED BY THE ADVANCED RFSEARCH PROJECTS Ar NCY U'NDER ¢ ONTRACT NO DAHCIS 72 € 0304 ARPA ORDFR P

0 2223 PROGRAM CODE NO 3D30 AND 3P10 i

;

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BF INTERPRETEO AS REPRESENTING THE p

SEFICIAL OPINION OR POLICY OF ARFA THE U S GOVERNMENT OR ANY OTHFR PERSON OR AGENCY CONNECTED WITH THEM

DOCHMENT APPROVID FOR PUBLIC RELFASE AND SALF DISTIRIBUTION 1S UNLIMITED

g
T
A
3
i
)
ki
¢

PERSONNEL

3 Research Staff: Robert M. Balzer Systom Staff:

. Raymond Bates

: Richard Bisbey I1
Thomas L. Boynton
Jim Carlstedt
Stephen L. Casner
Danny Cohen
Martin ”. Cohen
E. Randolph Cole
Stephen D. Crocker
Ronald L. Currier
Thomas 0. Ellis
Lawrence M. Fages
Louis Gallenzon
Joel Coldberg
Neil M. Goldman
Nortor R. Greenfeld
John F. Heafner
James Koda
Ralph L. London
Richard C. Mandell
David R. Musser
Donald R. Oestreicher
Robert Parker
Paul Raveling
Jeff Rothenberg
Walter R. Ryder
Robert H. Stotz
Ron Tugender
Keith W. Uncapher
Donoe Van-Mierop
John J. Vittel
David S. Wile

Support Staff:

Research Assisiants:

Consultants: Nancy L. Bryen
Gerald]. Popek

Alen E. Algustyniak
R. Jacque Bruninga
George W. Dietrich
Clen W. Gauthier
Donala R. Lovelace
Raymond L. Mason
Mearion McKinley Jr.
Wiiliam H. Moore
Vernon W. Reynolds
Dale S. Russell

Robert Blechen
Ralph W. Caldwell
Wanda N. Canillas
Dale M. Chase
Jeannette Christensen
Kathie Colegrove
Nancy Dechter
Oralio E. Garza
Judy Gustafson
Patricia A. Hagedorn
Delie A. Heilig
Chloe Holg

Rose L. Kattlove
Kyle P. Lemmons
G. Nelson Lucas
Jack M. Mann
Katie Patterson
Betty Randali
Rennie Simpson
Nancy Travis
Deborah C. Willicms

Johkn K. Kastrer
Donald S. Lynn
Jarry Miller
David Wilcxzynski
Martin D. Yonke

Lo} b

.
T
S
e
Lo
i

Abstract »
Executive Overview vii

1. Program Verification 1

2. Programming Research Instrument 14
3. Automatic Programming 24

g Protection Analysis 34

5. Information Automation 42

6. Network Secure Communication 53
7. Special Projects 66

8. ARPANET TENEX Service 73
Publications 79

Colloquia a1

Doctoral Theses 84

CONTENTS

St kel (S ZAT ISRy

JER ST WAL ST

EONPRE PP V)

AR e e e s .‘:J

ABSTRACT

This report summarizes the research performed by USC/information Sciences
Institute from 17 May 1974 to 30 June 1975. The research is aimed at applying
computer science and technolegy to problem areas of nigh DoD/miiitary mpact.

The ISI program consists of eight research areas: Program Verification--logical
proot of program validity; Programming Research [nstrument--development of a major
time-shared microprogramming facility; Automatic Programming--the study of acquiring
and using problem knowledge for program generation; Protection Analysis--methods of
assessing the viability of security mechanisms of operating systems; Information
Mutomation--development of a user-oriented message service for large-scale military
requirements; Network Secure Communication--work on low-bandwidth, secure voice
transmission using an asynchronous packet-switched network; Special Projects-~further
development of Xerox Graphics Printer facilities; and /RPANET TENEX
Service--operation of TENEX service and continuing development of advanced support

equipment,

LTS N NN e

L»-.knuwm‘_ B s teana S A 2A AR

EXECUTIVE OVERVIEW

The Information Sciences Institute (ISl), a research unit of the University of Southern
California’s School of Engineering, was formed in May 1972 to perform research in the
fie«ds of computer and communications sciences with an emphasis on systems and
applications. The Institute, Iccated off-campus, has sufficient autonomy within the
University structure to assure it the freedom required to identify and engage in
significant research programs.

A close relationship is maintained with USC academic programs through active
cooperation among the Institute, the School of Engineering, the Depariment of Electrical
Engineering, and the Computer Science Department. Ph.D. thesis supervision is an
integral part of ISl programs, as is active participation of research assistants supporting
ISl projects. Also, participating faculty and graduate students from other departments
provide interdisciplinary capabilities for ISI projects.

The uniqueress of Sl 1s expressed in the foliowing objectives defined at its
founding:

e A major university-based computer science research center.

® A center with a largely full-time staff of researchers, augmented by
graduate students and facuity.

® A center which possesses a unique blend of basic research talent and
application and system expertise. The last two attributes are of special
significance to the application of computer science and technology to key
military problems.

® A university-based research center with strong active tiec to the
U.S. military community and a strong leadership role in identifying key
computer R&D requirements in support of long-term military needs.

The Institute is structured to provide research and development capability at the
system level--often required to assure an understanding of reai problems and to
provide useful solutions in transferable form. The management structure is such that
virtually any researcher is known by the IPTO Director and Program Managers. Project

R A ko i

i Fa R

I WP %

[T .

%
7
AR AR IR AT achU R AN T SseTiare

AR oY

vili

leaders share visibly in the responsibility for the conduct of each project and for the
quality and impact of the research. At the end of the third year of operation, the
full-time professioral research staif numbers 37. The total number of I[SI
employees--including full-time research staff, participating faculty and graduate
siudents, and support personnel--is 78.

e AavE O AR TR TRITY WS

PRI

The activities of ISI’s eight major areas of research and associated support projects
are summarize” Dbriefly below. Some of the research projects reported in this
docurient are discrete activities in themselves; others can be seen as parts of a larger
who:e. For example, Program Verification, Automatic Programming, and the Programming
Research Instrument projects should be considered as individual parts of an overall
research effort in Programming Methodoiogy; Information Automation, Network Secure
Communication, and Special Projects are linked elements of a major investigation into
Network Communications Technology. These mutual interdependencies among the

va-iuus projects at IS! contribute largely to the fruitfulness of the Institute’s research
activities.

Program Verification. The goal of program verification research at ISt 1s to
develop an effective program verification system for proving that computer programs
are consistent with precisely stated detailed specifications of what the programs are
intended to do. The system is expected to replace significant parts of testing in
curren! software development, and will also provide important tools for judging the
success of new programming language tesigns, new programming methodologies, and
new detailled specification techniques. Already running at ISl is an inttial, experimental
version of an interactive program verification system based on the conventional
iacuctive assertion method. The design philosophy is to provide automatic assistance
for the verification process where practical, and otherwise to rely on human interaction.
The system has verified numerous example programs. New capabilities and extensions
are proposed which will permit the verification of a far wider class of programs than is
now possible. The eventual impact will be an increase in the quality of software with
an accompanying decrease in the cost of producing high-quality software.

Programming Research Instrument. This project has completed a highly reliable
interactive microprogramming faciity o be used as a general-purpose emulation
laboratory for creating, manipulatirg, and debugging arbitrary computer architectures 3
and high-level language processors. It consists of a powerful sharable
microprogrammable CPU (the MLP) closely coupled to a TENEX system and appropriate
software to allow interactive access to, and control of, the environment to be emulated
via the ARPANET. The PRIM oroject personnel will iniegrate PRIM into the NSW
architecture and aid NSW users as well as saveral other miitary or laboratory users in
their introduction to and use of this facility.

TS vk 35

R IINX

SETPPRFS WINPTV SUBRG REREL Ao

Socaaadgn s N
R St i

e Tk T

. —FAS S MR

et —v,‘:».vg\'. s T npracendk 2.

e e b T P . ~, - s D e ~ merw BT RN

Automatic Programming. The major effort of the Automatic Programming project
is simply to allow users who are not computer programmers to funciionally specify their
application directly to a computer system, with the system transforming this input into a
precise functional specification of the application. This system is intended to be both
independent of ary particular problem domain and able to deal with "loose" (i.e.,
incomplete, inconsistent, etc.) problem-oriented descriptions of a domain through a
dialogue with the user. From this dialogue the system can acquire the "physics” {the
objects, laws, relationships, etc.) of the loosely-defired domain, structure it, and use it

vderstand further communication and finally tc write a2 program to accomplish the
v s tasks. The system is being developed in the context of a (simplified) real-world
problem, i.e., the militarily significant domain of first-level message distribution. It s
currently able to acquire a domain description from the problem statement. The project
was termirated at the £nd of the reporting period.

Pro:ection Analysis. The goal of this project is to develop efficient techmiques and
semiautomated tools for detecting in operating systems various types of protection
errors, ie., errors that allow the systems to be compromised. The approach is
empirical, based on the observations that (i) protection errors fall into a limited number
of distinct classes and (2) “error paiterns" representing the classes are effective
criteria for finding the errors themselves. The method is to collect a data base of
known errors. use it to determine the error classes, and (for each class) generate the
appropriate error pattern and search algorithm. To date, errors from a variety of
systems have been collected and a prototype package for finding errors of a single
class has been built. The project proposes to extend the set of error classes and to
provide packages for finding twelve different classes of errors.

Information Automation. The Information Automation project has a dual goal: 1) to
develop the technology for providing on-line computer services directly to untrained
users and 2) to develop a secure, on-line, interactive writer-fo-reader message service
for the military community. Such an on-line message service, new io the mihtary,
provides interactive assistance for formal messages from the imtial draft preparation
through coordination, transmission, and distribution. In addition, it wili provide informal
secure "off-the-record" communication without the need for face-to-face meetings. The
message service is being developed in phases: the first addresses message preparation,
the second will provide message delivery ard reception, the third 1s concerned with
debugging and test preparation, and the fourth 1s an operational test in a real miitary
environment. Phase one is currently underway. A set of reports describing the design
approach was produced in the fall of 1974 and an informal design was presented in
January. Coding of the message preparation system is now In progress. As a tool to
assist the system designer, a command language protocol analysis was developed and
tested.

LT Al S A RS EIZ PRI SRS LR ELR 42 SF AT S AN ST YT RS W A S A R, TN e LERRNEA AT Tt AL S CR

el PRt mala it SR < Sulall

IV Y.

.

A eI & T 5 e G S A e U B R U e S i 0 n e R SR R L A T G SRS 3 ?

]

Yy T D
btk Aartdd Lty

Network Secure Communication. The major objective of ARPA’s Network Secure
Communication project is to develop secure, high-quality, low-bandwidth, real-time,
two-way digital voice communication over packet-switched computer communication
networks. This kind of communication is a very high priority military goal for all levels
of command and control activities. 1SP’s roie in this effort is to continue developing the
Network Voice Protocol required for communication of coded speech over a
packet-switched network in real-time; to develop on-line voice conferencing capabilities;
: to continue implementation of the PDP11/SPS41 system for real-time LPC vocoding; and
to develop dynamic off-line voice systems for storage and retrieval of voice files.
] During the recent months the ISI NSC project worked on (1) improving the qualiiy of the
E real-time LPC system, implemented on the PDP-11/SPS41 system, (2) working toward
: getting the SPS hardware to be more reliable at ISl, and all the other ARPA sites, (3)
A modifying the existing PDP-11 operating system ("ELF") in order to achieve an efficient
operational state, and (4) issuing the exact defimtion of the network voice conferencing
protocol (NVCP).

RN P W LN

Y

Rabas sty s

Special Projects. The major Special Projects effort for the curreni year was the
further development of ISI's and ARPA’s Xerox Graphics Printer (XGP), a high-quahty
document printing capability in the form of a network terminal.

ARPANET TENEX Service. ISl 1s supporting, operating, and mawntaimng three
complete TENEX systems on a schedule of 161 hr/wk each, in order both to provide
TENEX service to ARPA and to support its research projects via the facilities at IS.. The
Institute provides 24-hour availability of TENEX systems, maintenance, and operators;
continued development/improvement support; and proper support of the XGP at IPTO.
Through this support we have achieved increased long-term up-time; faster repair and
improve preventive maintenance; economy of scale in operation; and the benefits of ISI
expertise in establishing requirements for optimal loading and high reliability. In
add:tion, this experience is used to assist in improving system reliabiity end to improve
the number of users which can be handled with required response time.

EIR £ AN SINUPL L UL S -2 NN N 7

WLATIR LA WA VARG D VR8N T LT YW SIS

e X Ay Ie S

PROGRAM VERIFICATION

Research Staff: Ralph L. Londox

Raymond L. Bates
Martin J. Cohen
Stephen D. Crocker
Lawrence M. Fagan
David R. Musser

Research Assistants: Martin D. Yonke
Donald S. Lynn

Support Staff: Betty Randall

GOALS AND IMPACT OF PROGRAM VERIFICATION

In many computer application areas the consequences of a program not performing
as intended can be quite costly or damaging. The goal of program verification research
at 1Sl is to develop a prototype program verification system for proving that programs
are consistent with precisely stated detailed specifications. With such a system one will
be able to achieve significant confidence that computer programs will perform as
intended. This system will be an important part of finding solutions to the manifest
problems of current software systems--their high cost, their unreliable behavior, the
difficulty of modifying them, etc. [1] The system will be used to help certify that
software is correct and is expected to replace significant parts of testing in current
software development. The system may be used in some cases to help detcrmine
whether protection and security specifications are met. The immediate impact will be a
system that will, at last, permit programmers to demonstrate that their programs meet
specifications. The system will also provide important tools for judging the success of
new programming language designs, new programming methodologies, and new detailed
specification techniques. The aventual result of advances in program verification will
be an increase in the quality of software with an accompanying decrease in e cost of
producing high quality software.

)
|

Y R T T

R

PROGRAM VERIFICATION 2

CURRENT ACCOMPLISHMENTS—A RUNNING SYSTEM

We have now produced at ISl an initial, exnerimental version of an interactive
program verification system [2,3] The design philosophy of the system is based on our
strong belief that large parts of the total proof of actual programs can, and should, be
done automatically, but also that in the foreseeable future some parts will have to be
done by humans assisting the system. This seems a proper response to the genuinely
open-ended nature of facts, theorems, and deductions needed to verify realistic
programs. Thus our design strategy has been to provide automatic capability for the
proof process where practical and to reiy on human interaction for manual intervention
otherwise. If a program can be verified with no human assistance, then we shall
applaud the system’s achievement. We expect, howa ver, that the system will provide
sufficient assistance so that the verification can be completed with minimal human hints
or proof steps.

The main unigie features of this system are its good facilities for user interaction,
the modular system design which uses several previously existing components, the
particular natural deduction theorem prover that is used, and the theorem prover’s
method of incremental bounding of variables, which, among other things, facilitates
automatic proof by cases. The potential for modifying and expanding this system is an
important feature, too.

The ISl program verification system has successfully verified numerous example
programs, including binary search, various sorters, array rearrangement, arithmetic
computations, parts of a prime sieve, a few routines in the verification system itself, and
parts of two Lisp compilers. Of special encouragement and promise is the system’s
ability to support some abstractions both in the program and in its detailed
specifications. This permits the proof to be completed as a structure of interconnected
and intellectually manageable pieces, the only feasible way to verify large, complex
programs, In other words, the aim is to prove many small pieces of a program and then
to combine these proofs to ve-ify large programs. Verifying large programs as single
entities is doomed to failure,

A BRIEF DESCRIPTION OF THE SYSTEM

The S| program verification system is based on the conventional inductive assertion
method of proving properties of programs [4]. The verification task is decomposed into
parts as follows: from the program and the detailed specifications, first produce a set
of mathematical iemmas called verification conditions. The syntax and semantics of the
programming language, which may be defined in several ways, are used in this stap.

%
4
§
]
X
M

Y 2 fea DA

O R

PROGRAM VERIFICATION

The goal is now to prove all of the lemmas; if successful, the program is verified. The
proving starts by invoking various simplification and substitution capabilities (axioms,
conditional transformations, and cubgoaling) covering ordinary arithmetic, the problem
domain, and the specifications.

Simplification alone often proves many of the iemmas. 11.2 remaining unproved
lemmas are passed to the interactive theorem prover, where numerous theorem-proving
capabilities are invoked. If unproved lemmas still remain, they must be analyzed
(currently by humans) for several situations: (1) to see if a proof seems possible,
. perhaps by supplying hints or additional information to the theorem prover; (2) to see if
i the lemma is false, perhaps by constructing a counterexample, thereby indicating the
i need for changes to the program, to the specifications, or to both; or (3) perhaps the
truth or falsity of the lemma cannot be determined, which indicates changes as in item 2.

The verification system consists of five major components: a standard text editor,
a program and assertion parser for Pascal programs, a verification condition generator,
a simplification and substitution package, and an interactive theorem prover. The entire
system is Lisp-based, is now completely compiled, and runs as a large program on a
PDP-10 computer. The system is implemented in Reduce, a Lisp-based symbolic
mathematical system developed by A. C. Hearn. The particular Lisp that is used is UCI
Lisp, primarily because of its impressive debugging facilities.

One of the important features of this system is the extent to which we have been
able to use previously written and highly developed programs as major system
components, First of all, Reduce, in addition to its powerful, well-developed algebraic
manipulation capability, has served as an effective language for system implementation,
and will permit the system to be as portable as Reduce itself. Qur PDP-10
impiementation of Reduce also has a built-in link to a text editor, and this provides the
editor for the verification system. The Pascal parser, developed at ISI, was written in
Reduce. The verification condition gerwrator is essentizlly the Pascal generator of
lgarashi, London, and Luckham [5), originally developed at Stanford. The simplification
end substitution package was developed at ISl, drawing in part on the algebraic

manipulation capability of Reduce. Several orders of magnitude in speed improvement 3
have been achisved over some of our earlier simplification capabilities. 3
1

Another experimental simplifier, called CEVAL, is operational. CEVAL is an 4

evaluator/simplifier of iogical, relational, and arithmetic expressions. [t has built-in
knowledge of propositional calculus, the equality relation, and order relations and
arithmetic operations on expressions representing integers and rational numbers.
Additional domain-dependent knowledge is accessed via pattern match rules, obtained !
from a library of rules or supplicd by the user. Simplification of arithmetic expressions

PESTAPPR I

LAl rh w et w3 ar

4
< 2o s i
. ot v L il e 9
WW— dandt, itk 3 e i sk v m S 2 £l

PROGRAM VERIFICATION

and pattern matching are handled by calls to the standard evaluator of the Reduce
system. Conditional expressions (if-then-else) are used internally to represent all
propositional caiculus operators (not, and, or, implies, equivalent). CEVAL implements
only a small set of transformations on corditional expressions, similar to those discussed
by McCarthy {6] and implemented previously in the Boyer-Moore Thaorem Prover (7]
However, it is still "complete” with respect to propositional calculus, in that any valid
formula in the propositional calculus (i.e., provable by truth table) will be reduced to
TRUE by the transformations. OQutput is available either in terms of the conditional
operator or re-expressed in terms of not, and, or, and implies. Conditional expressions
have also been used in pattern match rules to express axioms for abstract data types,
as in Zilles [8] and Guttag [3] Data types which have Leen axiomatized include arrays,
stacks, queues, lists, sets, graphs, trees, und files. The convenience of conditional
expressions in this usage was one of the motivations for choosing conditional
expressions as the basic internal forr of expressions in CEVAL.

The thecrem prover is a variation of the prover described by Bledsce and Bruell
[101 The prover originally was developed at the llniversity of Texas at Austin in
UT-Lisp, and was translated into Reduce for incorporation intc the system. Although
the prover has been modified to make it more effective on the types of theorems
encountered in proving programs, its basic structure and interactive philosophy remain
velid and unchallenged. We have recently added rational arithmetic to existing integer
capabilities as well as additional interactive commands to allow the prover to work on
specific subgoals and cases.

Currently, the normal mode of using the system is to invoke interactively the
following system operations under the direction and assistance of an oversecr program:
create the program and and specifications, parse them checking for syntax errors,
generate verification conditions, simplify them, and prove those that do not simplify to
TRUE. The overseer includes important bookkeeping, checkpointing (dump and restore),
and flexible proof step reordering facilities. The user can descend directly into Reduce
or Lisp.

Users of the program verification system are expected to be skilled in both
programming and in the problem domain for which they are writing programs. However,
even with this expertise, users have 2 right to expect good human-factors features in
the verification system. While much remains to be done in this important area, the
verification system already does a credible job of displaying prngrams, theorems,
specifications, formulas, the progress of a verification, user options, etc., in terms that
are natural for humans. In particular, on TV-like terminals there are simple, but
effective, special input/output facilities available, including split-screening.

T 4 2

DIVRWER Y SHR P

s e beR AN P

PROGRAM VERIFICATION 5

A DETAILED EXAMPLE—BINARY SEARCH

Below is a transcript of the interactive verification system successfully veiitying a
binary search program. The transcript shows the dialogue that produced the
verification. The actual proof is a small subset of this dialogue. Some of the output
has been eliminated or slightly modified to save space without changing the sense of the
human interaction or the steps of the actual verification. An example of successful
verification of programs involving procedures and functions may be found in [2]

Conventions: The prompt for human input s *>" thus human input foliows the >.
“$" asks for the default continuation at that pcint. Explanatory comments are enclosed
in braces { }.

7This program does binary search on the array A[l .. P-1] trying
7to locate the element X. If successful, then LCOKUP is set

7such that A[LCOKUP]=X and ERROR is set FALSE. If unsuccessful,
7ERROR is set TRUE.

ENTRY 1 <P & SORTEN(A) & A[1] LE X & X < A[P};
EXIT (A[LOOKUP]=X) AND (ERROR=FALSE) OR NOTFOUND(X,A) AND { ERROR =TRUE);
BEGIN M:=1;N:=P;ERROR:=FALSE;
ASSERT M < N & A[M] LE X & X < A[N] & SORTED (A) &ERROR=FALSE;
WHILE M+1<N DO BEGIN

:=(M+N)DIV 2;

IF X < A[1] THEN N:=l ELSE IF A[1] < X THEN M:=!

ELSE BEGIN LOOKUP:=GOTO 1 END

END;
IF A[M] NE X THEN GO TO 2 ELSE BEGIN LOOKUP:=M;GO TO 1 END;
2: ASSERT NOTFOUND(X,A);ERROR:=TRUE;
1: ASSERT (A[LOOKUP]=X) AND (ERROR=FALSE) OR NOTFOUND(X,A) AND (ERROR=TRUE);
END.

>PROVE BSRCH; {Start wor!\ on problem named BSRCH}
Parse: § (FILE = BSRCH.PAS), RESET (FILE)
>8 Parsing file BSRCHPAS {the above program}
Vegen: § (UNIT = MAIN), RESET (UNIT)
>8using unit MAIN {selecting main program over any
procedures [functions;
Generating verification conditions MAIN#1 ... MAIN#8
Trying to simplify MAIN#1
Choice: 3 (PROCEED), +/-N, END, ASSUME, DEFER, STATUS, REDUCE
>Sproceeding
1<P
and SORTED(A)

TR Et e ks e W R L PP o Ak & R bk A A AT LAY €5 Ak K Ak el e # ek o

L;\«‘.a PRI

A TR LN S IR

Kol

PROGRAM VERIFICATION 6),

and A[11LEX

and X < A[P] 3
imp 1<P 1

and A[1JLE X

and X < A[P] 5

and SORTED(A) e

and FALSE=FALSE)
simplified to

TRUIE .
VC was MAIN#1 3

Trying to simplify MAIN«2 4
Choice: $ (PROCEED) ...
>$proceeding
M<N
and A[M) LE X
and X < A[N]
and SORTED(A)}
and ERROR=FALSE
and M+l <N
imp X < A[(M+N) DIV 2]
imp (M < (M+N) DIV 2) and (A[M] LE X) 4
and X < A[(M+N) DIV 2] b
and SORTED(A) E
and ERROR=FALSE
simplified to 4
X < A[(M+N) DIV 2] 4
and X < AIN]
and A[{M] LE X
and M#2 LE N
and M<N
and SORTED(A)
imp M < (M+N) DIV 2
VC was MAIN#2 save as? >SMAIN#S2 ¥
Trying to prove MAIN#S2
Choice: $ (PROCEED) ...
>Spioceeding
(SETUP) { (x y 2) denotes theorem orover operations;
here processing inequalities}
>Print Current thearem
N in [M+2.POSINF]
and M in [NEGINF..N-2]
and A[M] 1in {NEGINF..X]

3 and A[N] in (X..POSINF]

4 and X

4 in [A[M]..

\ MINCA[(M+N) DIV 2] - 1,
' AINT -)]

r
4
3
1
4
L "
AT AL 4NN Cat ok AT e ie dabe SUAYE SAYA (ORI s SR <A s 2, i s o

e s
Ced - 3

PROGRAM VERIFICATION 7

oo

i ortH S AT

and A[(M+N) DIV 2] in (X..POSINF]
and SORTED(A)
imp M < (M+N) DIV 2
>Sproceeding
..more time? >NO
M < (M+N) DIV 2 {conclusion of current subgoal}
Failed Time Limit

e, A ORTRNORITR IR €T

>USE
Lemma:
3 >2x XLEYIMP XLEY DIV
3 save as? >DIVFACT
E: X.#2 LE Y. {periods added to denote matchable variables}
- imp X. LEY. DIV 2
‘ [Confirm]

(SETUP USE-LEMMA)
. >G0 {requests automatic completion of proof step}
i (SETUP USE -LEMMA GO BACK-CHAIN)
: [Using Y. := M+N ; X. := M+1]
M+2 LEN
B PROVED by typelist
3 M < (M#N) DIV 2
PROVED
MAIN#S2 PROVED
A Trying to simplify MAINs3
3 Choice: § (PROCEED)
3 >$proceeding
M<N
and A[M] LE X
and X < A[N]
and SORTED(A)
and ERROR=FALSE
and M+i <N
imp NOT (X < A[(M+N) DIV 2]
imp A[(M+N) DIV 2] < X
imp (M+N)DIV2 <N
and A[(M+N) DIV 2] LE X
and X < A[N]
and SORTED(A)
and ERROR=FALSE
simplified to
X < A[N]
and A[(M+N) DIV 2] < X
and A[(M+N) DIV 2] LE X

Sttt s

4 and A[M] LE X

: and M+2 LE N
and M<N

4 and SORTED(A)

PROGRAM VERIFICATION 8

imp (M+N) DIV 2 < N
VC was MAIN#3 save as? >SMAIN=S3
Trying to prove MAIN=S3
Choice: $§ (PROCEED) ...
>8Sproceeding
(SETUP)
>USE DIVFACT; {the same lemma used in MAIN#S2}
Lemma:
X2 LE 7.
imp X.LEY.DIv 2
{Confirm]
(SETUP USE-LEMMA)
>G0
{SETUP USE-LEMMA GO BACK-CHAIN)
[Using Y. := -(M+N) ; X. := 1-N]
M+2 LEN
PROVED by typelist
(M+N) DIV 2 <N
PROVED
MAIN#S3 PROVED
Trying to siraplify MAINs4
Choice. $ (PROCEED)
>8proceeding
M<N
and A[M] LE X
and X < A[N]
and SORTED(A)
and ERROR=FALSE
and M+1 <N
imo NOT (X < A[(MN) DIV 2])
imp NOT (A[(M+N) DIV 2] < X)
imp A[(M+N) DIV 2] = X
and ERROR=FALSE
or NOTFOUND(X, A) and {ERROR=TRUE)
simplified to
X LE A[(M+N) DIV 2]
and X < A[Nj
and A[{M+N) DIV 2] LE X
and A[M] LE X
and M+2 LE N
and M<N
and SORTED(A)
imp (FALSE=TRUE) and NOTFQUND(X, A)
or X = A[(M+N) DIV 2]
VC was MAIN#4 save as? >$MAIN#S4
Trying to prove MAIN#S4
Choice: $ (PROCEED) ...

AR

o 3 N S 4 Y AR uT I AP N T AR TR

PROGRAM. VERIFICATION 9

>Sproceeding
(SE7UP)
>GO
(SETUP GQ)
Typelist equality added to hypotheses: X = Al(M+N) DIV 2]
Disjunct found in hypotheses: X = A[{M+N) DIV 2]
(FALSE=TRUE) and NOTFOUND(X, A)
or X = A[(M+N} DIV 2]
PROVED
MAIN#S4 PROVED
Trying to simpiify MAINs5
Choic2: 8 (PROCEED) ...
>§proceeding
M<N

and A[M] LE X

and X < A[N]

and SORTED(A)

and ERROR=FALSE

and NOT (M+1 < N)
imp A[M] NE X imp NOTFOUND(X, A)
simplified to

X < A[N]

and A[M] LE X

and M<N

and N LE M+!

and X NE A[M]

and SORTED{A)
imp NOTFOUND(X, A)

VC was MAIN#5 save as”? >SMAIN#SH ‘5

Trying to prove MAIN#S5 ,‘é
Choice: S (PROCEED) ... ;i
>Sproceeding ;}
>GO 4
(GO SETUP)

CR PR

Typelist equality added to hypotneses: N = M+]
Automatic substitution: Mi=N-]

(GO SETUPR =SUB)

.NEED MORE INFORMATION

£.ahrS il ot

>UsE

Lemma: 3

>SORTED(A) AND (A[K] < X} AND (X < A[K+1]) IMP NOTFOUND(X,A);
§ save as? »SORT1 b
1 X. < A[K.+1] g
: and A[K.] < X. ;

and SORTED(A.)
imp NOTFOUND(X,, A.)
[Confirm]

P

il e e i Sl g ko

vk s

LTy

PROGRAM VERIFICATION 10

(GO SETUP =SUB USE-LEMMA BACK-CHAIN)
[Using K. := N-1; X. :=X; A.:= A]
X < A[N]
PROVED
A[N-1]<X
PROVED by typelist
X. < A[K.~1]
and A[K.] <X
and SORTED(A.)
PROVED
NO1FOUND(X, A)
PROVED
MAIN#S5 PROVED
Trying to simplify MAIN=#6
Choice: 3 (PROCEED? ...
>DEFER {requests delayed action on this goal}
Trying to simphfy MAINs7
Choice: $ (PROCEED) ...
>§proceeding
NOTFOUND(X, A)
imp (A[LOOKUP] = X) and (TRUE=FALSE)
or NOTFOUND(X, A) and (TRUE=TRUE)
simplified to
TRUE
VC was MAIN#7
Trying to simplify MAIN®8
Choice: $ (PROCEED)
>8proceeding
(A[LOOKUP] = X) and (FRRCR=FAL SE)
or NOTFOUND(X, A) and {ERROR=TRUE)
imp (A[LOOKUP] = ¥) and (ERROR=FALSE)
or NOTFOUND(X, A) and (ERROR=TRUE)
simplified to
TRUE
VC was MAIN#8
Prove: NO(S),UN(DEFERRED), DEF(ERRED) (VC'S), or (RE)VCGEN
>DEF {requests action on deferred goals;
Trying to simphfy MAIN®6
Choice: § (PROCEED) ...
>Sproceeding
M<N
and A[M] LE X
and X < A[N]
and SORTED(A)
and ERROR=FALSE
and NOT (M+1 < N)
imp NOT (A[M] NE X)

‘%
4
b
i
i
K]
H
i

PR TSR R

s L A L A

$Y 3 3ra

PROGRAM VERIFICATION il

imp (A[M] = X) and (ERROR=FALSE)
or NOTFOUND(X, A) and (ERROR=TRUE)

Proposed substitution: X := A[M]
>YES
Sub used: X:=A[M]
simplified to
TRUE
VC was MA'"™ 46
>STATUS;
MAIN#] ==> PROVED by simplifier
MAIN#2 ==> MAIN#S2 PROVED by prover
MAIN#3 ==> MAIN#S2 PROVED by prover
MAIN#4 ==> MAIN#S4 FROVED by prover
MAINs5 ==> MAIN#S5 PROVED by prover

TP ET, MR AT AN

Y

MAIN#6 ==> PROVED by simphfier
MAIN%7 ==> PROVED by simplifier
: MAIN&8 ==> PROVED by simpiifier

OVERALL EXPECTED PROJECT ACHIEVEMENTS

Verifying programs is not now a trivial task, nor should one expect the task ever to
become trivial. Some people claim that computer programs are among the inost comglex
objects created by the human mind. Accordingly, while we are optimistic, we neither
seek nor expect panaceas in the area of program verification. We do expect, however,
effective systems to aid humans in the verification task (and indeed in the joint effort of
program construction and verification).

s o sy

The current ISI verification system is already useful in helping to verify programs,
as shown by the some fifteen examples from the verification literature it has
successfully verified. More importantly, by virtue of its generally modular construction,
we can experiment with new system components and with new verification strategies
and ideas. We will continue to do this as we make more of cur verification experience
available to others in the form of an effective program verification system. Yet, we are
: also very much aware of the system’s shortcomings--both minor and fundamental.
- Correcting the minor hmitations can be viewed as system tuning, and some of this
' remains to be done. QOur major continuing efforts, however, will be directed to
overcoming fundamental restrictions in achieving a truly effective system for
widespread human use in verifying large, important programs. Success here will permit 5
E: the verification, and hence improved quality, of a far wider class of programs involving k
many more programming .anguage constructs. Furthermore, such verifications will be
markedly more crediizle and much easier and less expensive to accomplish than is now
¢ possible. The payoff will be software that is known to meet specifications and to work
3 as intended.

. shsdac Lh

wra ara NA A e S vbs Ta

PROGRAM VERIFICATION 12

The user will ultimately see an improved version of the currently running system
which has been described previously. He will present to the system both his program
and his detailed specifications of what that program does. More precisely, the user will
present the program part-by-part along with the corresponding specifications; the
overall verification will be completed by combining the veritications of these parts. The
system will keep track of the progress of the proof and, in particular, will indicate what
remains to be proved. [t will accept advice, hints, and changes from the user and will
provide suggestions to the user. It will collect all the facts which the user advises may
be assumed in the verification so that the user (and others) will know what assumptions
were made in the verification. It will present the final verification in a readable form,
The system will play the dual role of overseer of the verification and of helpful
assistant for the user as both the user and the system jointly work on verifying the
user’s program. The user will thus be able to verify his programs or to discover where
errors exist in either his program or his specifications. The main use of the system will
be in achieving software that provably does what it is supposed to do. The system will
also, as noted, be useful in judging the success of new programming language designs,
new programming methodologies, and new detailed specification techniques.

As we develop interactive and automatic verification tools during the course of this
project, we expect to use them successfully on significant, real computer programs
which will be selected from both computer science and military applications. In this way
we will successfully demonstrate that the goals, impacts, and payoffs that are described
are indeed achievable.

y

o«
(a4

PROGRAM

RIFICATION 13

REFEREES

1. Goldberg, J, ed., Proceedings of a Symposium on the High Cost of Software,
Monterey, California, September 1973. Published by Stanford Research Institute.

2. Good. 0. |, London, R. L, and Bledsoe, W. W., "An interactive program verification
system,” Proceedings of International Conference on Reliable Software, April
1875, 482-492. A'so, IEEE Transacticns on Software Engineering, SE-1, 1,
March 1975, 59-67.

3. London, R. L. and Musser, D. R, "The application of a symbolic mathematical
system to program verification,” Proceedings of ACM Annual Conference, 1974,
265-273.

4, Floyd, R. W., "Assigning meanings to programs,” Proc. of a Symposium in Applied
Mathematics, Vol. 19--Mathematical Aspects of Computer Science,
J. T. Schwartz, ed., American Mathematical Society, Providence, RJ, 1967, 19-32.

5. lgarashi, S, London, R. L, and Luckham, D. C., "Automatic program verification
I: A logical basis and its implementation,” Acta Informatice, 4, 2, 1975, 145-182,

6. McCarthy, J, "A basis for a mathematical theory of computation®, Computer
Programming and Formal Systems, P. Braffort and D. Hirschberg, eds., North
Holland Publishing Company, Amsterdam, 1963, 33-70.

7. Boyer, R. S. and Moore, J S., "Proving theorems about LISP functions," J. ACM,
22, 1, January 1975, 129-144,

8. Zilles, S. N, "Algebraic specification of data types"”, Project MAC Progress
Report 11, Massachusetts Institute of Technology, Cambridge, Mass., 1974,

9. Guttag, J. V., "Dyadic specification and its impact on reliability," Three Approaches
to Religble Software: Language Design, Dyadic Specification, Complimentary
Semantics, J. Donahus, J. D. Gannon, J. V. Guttag, and J. J. Horning, Technical
Report CSRG-45, Computer Systems Research Group, University of Toronto,
Toronto, Canada, December 1974, 18-88.

10. Bledsoe, W. W. and Bruell, P.,, "A man-machine theorem-proving system," Advance
Papers of Third International Joint Conference on Artificiul Intelligence, 1973,
56-65. Also, Artificial Intelligence, 5, 1, Spring 1974, 51-72,

GaRcaa s

14

PROGRAMMING RESEARCH INSTRUMENT

Research Staff: Louis Gallenson

Raymond Bates
Joel Goldberg
Raymond L. Mason

Support Staff: George W. Dietrich
Oralio E. Garza
Rennie Simpson

DESCRIPTION

The PRIM (Programming Research instrument) project has completed an interactive
microprogramming facitlity to be used as a general-purpose emulation laboratory for
creating, manipulating, and debugging arbitrary computer architectures and high-level
language processors. A uriaue service on the ARPANET, it consists of a powerful
sharable microprogrammable CPU (the MLP-9C0) closely coupled with 3 TENEX system
and eppropriate software {o allow interactive access to, and control of, the computing
environment the user wishes to emulate. The MLP-900 has proved to be reliable in
continuous operation since August 1374, with the primary applicativas being the
emulation of existing minicomputers for experimentation and evaluation. A hbrary of
emulators is being developed as user population grows; the library currently consists of
a basic PDP-10 (developed as a test venicle for the system), a PDP-8, a PDP-11, an
ANJUYK-20, a Unmivac 1050 MODZ, and a Nova (CPU only). As the emulator hbrary
continues to grow, the PRIM facility should become more attractive to a larger user
community. Curreni plans also include allowing users access to these virtual machines
(emulators) via a National Software Works Tool Beartng Host. This will make avaiiable
several new NSW tools with a single interface. (See Seciton 3 for a further discussion
of the National Software Works (NSW).) PRIM 1s therefore becoming a service facilty,
providing a unique tool to groups of NSW programmers, as well as an experimental
computer environment for tre researcher.

THE PRIM FACILITY

The PRIM system was developed at ISl as a subsystem of TENEX, the time-sharing
system of Bolt, Beranek and Newman, Inc. PRIM consists of the MLP-900
microprogrammable processor together with appropriate software to drive the
MLP-900, to support MLP-900 microprogramming, and to provide an environment in
which users create, manipulate, and interact with therr emulators and/or emulated
systems, a1d user documentation.

AT e A

N Caean o Ll oo et iy DA g £ s otk N - D
e e €t e A A A T IS Piar e T o Lyt o TPy
P Y TAN Y TR UL e L e b P AR '—-- N Ay, AR v A

Y L R PR SRR AT

PROGRAMMING RESEARCH INSTRUMENT 15

Hardware

2 ! oo YAV I
PpA 2l T AT AL s £ Jﬁ}&mmm

PRIM’s hardware system is based on two processors: the Digital Eq. pment

Corporation’s POP-10 and the STANDARD Computer Corporation’s MLP-900 prototype
: 2 processor. (See Fig. 2.1.) The PDP-10 and MLP-900 share memory as dual processors;
3 - the MLP-900 is also a device on the PDP-10 I/O bus. The PDP-10, connected to the

ARPANET, runs under TENEX with a paged wirtual memory. Its processor contains 256K
words of 36-bit memory. The 1/O operations performed by TENEX include file, terminal,
and network handling, swapping, and all other accesses to peripheral devices.

1Y

3 The MLP-900 is a vertical-word microproc:zmmed computer (microprocessor) that
- . runs synchronously with a 4-MHz clock. '. 1s characterized by two paraliel computing
1 engines: the Operating Engine (CE), wrrch performs arithmetic operations, and the
) Control Engine (CE), which performs control operations. The OE contains 32 36-bit
3 general-purpose registers for operands and 32 36-bit mask registers to specify

operand fields. A 1K 36-bit high-speed auxiliary memory 1s associated with the OE.
The CE contains 256 state fiip-flops, a 16-word hardware subroutine return stack, and
16 8-bit pointer registers. The MLP-300 is accessible only through the PDP-10 as
outlined above (ie., the 1/0 bus and shared memory); no p-ovisions have been r ade for
direct connection of any peripheral devices. The introduction of a microvisor state has
been of major importance to the PRIM proiect. Prior to this project, little had been
done toward making the multitude of available microprogrammed processors potentially
sharabie resources. This initial experment goes a long way toward making
microprogrammed processors widely and inexoensively available.

[T Sy S

Figure 2.1 The MLP-900. j

- —— M) Ao fm it s wa w e

PROGRAMMING RESEARCH INSTRUMENT 16

Software

There are three principal items of PRIM software:

PP RN

® The General Purpose Microprogramming Language {GP™.!) compiler.
® The MLP-300 microprogram supervisor (microvisor).
® The TENEX MLP-900 programs, i.e., the MLP-900 driver and MLP-EXEC.

The GPM compiler was essentially completed in early 1973; for a more detailed
account of its development the reader should consuit Ref. 1.

GPM and the GPM Compiler. GPM is a high-level machine-oriented language,
written in TENEX BLISS, designed explicitly for the MLP-900. As a high-level language,
GPM offers a block structure and statement syntax similar to PL/1 or ALGOL. The
specific statement types defined in GPM are generalizations of the actual MLP-900
MINIFLOW instruction set; constructs completely foreign to MINIFLOW (e.g., multiplication)
do not appear in GPM. As a simple example of MINIFLOW generalization, consider that
the result of a GEAR (GEneral ARithmetic) ministep may be shifted left or right only by
0,1, 2, 4,6, 8 12, or 16 bits; in GPM, any shift amount may be specified, and the
compiler will generate multipie shifis as required.

As the production language for the MLP-900, GPM is constrained to satisfy many of
the usual requirements of an assembly language. First, there is a well-defined subset
of GPM state.nents that produce exactly one ministep per statement; the subset is
capable of generating all possible ministeps. Second, multi-ministep statements do not
generate implicit side effects; for example, a complex arithmetic assignment that
requires a temporary register for an intermediate result will generate a compile-time
error unless the programmer has explicitly declared some register to be available as a
temporary.

The GPM compiler is successfully being used to write diagnostics for the MLP-900
and test user software (emulation of a PDP-10). Experience with the compiler reveals
that minor modificat'ans and suggested speed improvements may be required. The
improvements will be considered as more measurement data is accumulated and specific
critical code is further identified.

MLP-900 Microvisor. The MLP-900 microprogram supervisor (microvisor) is a
small, fully protected resident system tat controls the MLP-900 and its communication
with the PDP-10. it loads and unloads the user’s MLP-900 context upon command from
the PDP-10, supports paging of the user target program, protects main memory and the
rest of the PDP-10 system from user interpreter errors, and provides the interpreter
: with a few services, such as an extended subroutine stack and calls for external
1 communication. (The microvisor requires 356 (octal) words of control memory, including
its Action Request locations.)

ety A 3 a

Lt

R Pt otk A 4% At d e bt b S0 R A

v
3

At] St BT poaars 3wy

PROGRAMMING RESEARCH INSTRUMENT 17 ’

The microvisor performs the functions normally expected of an operating system,
the difference being that it is written in microcode and supervises the eyecution of
microcode. The microvisor interacts only with the user microcode and the TENEX MLP
driver; it does not provide any facilities for--or impose any restrictions upon--the user
target system. User microcode is subject to the restrictions imposed by the user mode ,
MLP-900 hardware.

PDP-10 Support Programs. The PDP-10 TENEX software for support of the
MLP-900 consists of a driver to control communication with--and sharing of--the :
MLP-900, and a subsystem (MLP-EXF™ to allow interactive access to the MLP-900 for a 7
user at a TENEX terminal. The MLP driver and its TENEX JSYS’s comprise the interface 3
to the MLP-900 used by MLP-EXEC.

The TENEX MLP-300 Driver. As mentioned above, access to the MLP-900 from a 3
TENEX process is accomplishec via the MLP driver in TENEX. The driver is the
~x*ansion in TENEX of the microvisor; all communication with the MLP-9090 goes through b
the driver. While new microcode "machines” can be designed and debugged under the
MLP-EXEC, completed ones will work directly through their own terminal subsystems,
which will communicate directly with the driver. Communication with the driver is
accomplished through a series of JSYS’s which mimic (roughly) the JSYS's for subsidiary
fork control. The two principal elements involved in creating and running the MLP are
the MLP context (the user miciocode together with all the MLP registers) and the target
system upon which the context is to operate. The calling process must build both
before establishing access to the MLP.

L

The context is a structure that contains all the data necessary to load the MLP and
begin (or resume) execution of the desired microcode. It includes not only an image of ,
the MLP-900 control memory, but also the internal MLP-300 registers and some cells E:
used by the driver to implement MLP-900 communication with the PDP-10. The context
is 10 memory pages (5120 words) long, and must begin on a page boundary in the
caller’s address space.

The target system is the memory upon which the MLP context is to operate. It is
defined as a TENEX fork (or process)--either the caller or a subsidiary fork established
solety for this purpose. Typically, the target system fork (SFORK or SFRKV) will never 4
be started on the PDP-10; it exists to define an address space for MLP execution. ;

To protect the I1Si TENEX system and lessen the impact of MLP debugging (both
hardware and software) the intial version of the driver has been implemented almost
entirely as a normal user process rather than as part of the TENEX operating system.

This preliminary driver is being used in debugging the entire system, including the %
interfaces between the microvisor and the driver, and between MLP-EXEC and the

driver. While the differences between preliminary and final driver are transparent to k
both the microvisor and the user microcode, there are some unavoidable differences for 5
the calling TENEX process. MLP-EXEC 1s aware of the differences, and hardles them
properly; to the user of MLP-EXEC, the only visible difference is that the response time :
is longer. s

Ly it e o 2

Veen - TREE SRS

s 05 £ 0ndi ot S ian iy - riasSar e g S —

PROGRAMMING RESEARCH INSTRUMENT 18

MLP-EXEC and its Commands, MLP-EXEC is a user program, called via TENEX,
written primarily in BLISS. The program basically consists of two modules: the /O
handler (which inciudes file access and target memory allocation) and the debugging
facility (MLP DDT). The MLP-EXEC commands assum2 a familiarity with TENEX Exec
commands; a subset of TENEX commands is implemented for functions similar to those of
the TENEX Exec.

MLP-EXEC provides an environment in which the user at a terminal can compile,
load, execute, and debug MLP-900 microcode in a manner similar to that used for
debugging programs on the PDP-10. In addition, he can create and debug target
programs and environments--although these tools must be provided at a very primitive
level, since MLP-EXEC cannot know the nature of the target environment.

The MLP-EXEC "ready” character, ">," signals the user to enter a command.
Commands to MLP-EXEC can specify any of several types of actions:

Controlling the loading, execution, or debugging of the MLP context.
Controlling the loading and debugging of the target system.

Setting up the input/outpul files for the MLP.

Providing access to the TENEX within MLP-EXEC as a convenience.

All the commands for user context manipulation begin with a period ("."). These
include LOAD, RESET, CONTINUE, RUN, SAVE, GET, and DDT commands.

Ali of the commands for the target system begin with the character "/" and use
standard TENEX subsystems in responding to the command (i.e., /LOAD invokes the
standard TENEX loader to load a relocatable binary file into the target system’s address
space). These include GET, MERGE, DDT, SAVE, SSAVE, and RESET commands.

The command format, key words, arguments, and separators are identical to those
used in TENEX. MLP-EXEC prompts for each field required by the user’s command, and
the escape terminator will complete abbreviated commands. Additionally, two
characters {Control T and Control C) act as commands in themselves to control MLP
execution and to provide status information on the MLP. Editing contro! characters are
also included to edit command key words and arguments,

User Interpreter and Target Program. The user’s interpreter is a program written
in GPM to run on the MLP-900; it defines a (re-entrant) MLP-900 control memory image.
This image, together with all the nonprivileged registers and flip-flops within the
MLP-900, is the MLP-900 context; user’s contexts are loeded and unloaded as tha MLP
driver shares the MLP among different users.

The context defines the user’s interpreter (or target machine) and operates upon
the user target program in a totally arbitrary way. The only constraint uoon the target
program is that it fit into a 512K, 36-bit (virtual) memory space.

253w AR Geileds

205

FFCNT PRI X

Warn weln L

TR ooy

......

PROGRAMMING RESEARCH INSTRUMENT 19

PAST EFFORTS

PRIM has been a major project at ISI since the inception of the Institute in May of
1972. The goals of the project have remained essentially the same ttrcughout this
period of time: to provide a flexible experimental computing envircnment available to
the researcher via the ARPANET. The implementation of this unique facility successfully
demonstrated several firsts:

1. To take advantage of a rich source of existing software, the micropr sgrammable
computing engine was closely coupl.d to a TENEX system which provides all the 1/0 and
file handiing capabilities. We were able to create a microprogrammable environment
and still minimize the new software required to provide the researchers with the
needed tools.

2. The microprogrammable computer has been implemented as & multi-access
sharable environment requiring an executive state. The MLP-900 hardware was
modified to provide protection of the resident microvisor, as well as protection between
users of PRIM ¢nd the TENEX systems.

3. A generalized debugger is currently being implemented to facilitate debugging
of target programs for a variety of environments and emulated computer architectures.

The first year’s effort was primarily concerned with system design, hardware
development, and the design of a compiler to produce microcode for the MLP-500. The
second year’s effort completed the designs and implementations of the haruware and
software requirements. This included integration and checkout of the hardware,
diagnostics and the software to drive the MLP-900 from the TENEX operating system.
The third year’s effort was primarily concerned with interacting with potential users,
developing emulators, final debugging, and subjectively monitoring the use and
acceptance of the facility. The documentation of the facility was also completed: PRIM
User’s Manual [1] and the Maintenance Manual (the latter in draft form).

CURRENT EFFORTS

Recently we have been involved in introducing PRIM to a number of users in the
military community to demonstrate its utility, evaluate its acceptance, and coilect data
for inputs to IPTO for planning management of this facility, We have taken two
approaches in introducing the PRIM svstem. First, wide distribution {more than 200
copies) of the PRIM Quverview, coupled with invitations to an introductory workshop and
demonstration of the system. Second, direct contact with some thirty individuals
representing twenty organizations within the ARPA and military communities. Most of
ihe direct contacts were initiated by us; the rest were the result of queries Ly persons
receiving the Querview.

QOur approach i1s to seek out potential users within the military commands, assess
their problems, and (where warranted) join with them in a team effort to solve these
problems. A joint effort between ISI and NELC has produced an AN/UYK-20 ~mulator in

okt

A

(e e e e

FF N TR

e

PROGRAMMING RESEARCH INSTRUMENT 20

order to .onduct a set of experiments required by an NELC Software Development
Group. The AADC project at NADC has expressed interest in using PRIM for
development work and computer architecture studies. As mentioned at the beginning of
this section, ISl is also using PRIM as a Tool Bearing Host of the National Scftware
Works. We also approachea selected individuals in the academic community (University
of Southern California, University of California at Los Angeles, and Carnegie-Mellon
University), encouraging students with qualified projects to use the PRIM facihty.

The Symbolic Manipulation of Computer Descriptions (SMCD) project at CMU will
utilize a microprogrammable computer to achieve its goals and has completed 2
comparison study of two candidates® The MLP-900 and a PDP-11/40E are two of the
candidates for the computer. The PDP-11 is a 16-bit machine housing 1K word of 80
bit microstore, and basic cycle time of 140 to 300 nanoseconds. Four primary
benchmark programs were written for each candidate including the Nova emulator (basic
CPU). The PDP-11 is a somewhat faster target machine except where the user can take
advantage of the wider data path of the MLP (36 bits) as in a multi-word integer
multiply. The MLP is somewhat easier to program the primary project task, an
optimizing micro-compiler, a'though the task is rated as difficult for both machines.
These conclusions are consistent with the expected advantages of both types of
microprogrammable computers, vectoral and parallel. The SMCD wroject will continue
this evaluation, since many cutside factors must be considered before selecting the
optimal tool to satisfy their research needs. NELC continues to express strong interest
in the PRIM facility. They are in the final stages of debugging their AN/UYK-20
emulator and are preparing a series of experiments for a dual host connection using the
MLP-900 TENEX and second host on the ARPANET. NELC has generated a proposal to
build and support a System Design Laboratory (SDL) - the core of which would be the
MLP-900 - and to continue to provide this unique service to the development community
via the ARPANET. Moving the MLP-900 to NELC would help to successfully terminate
this project, finding an appropriate home for the MLP-900 in the military envircnment is
one of the project’s major goals for FY77.

Recent interest in the MLP-900 has been expressed by: ADTC at Eglin Air Force
Base to evaiuate micro-processor architecture, Or. Wesley Chu of UCLA for a study
and evaluation of bus architecture, end provide an instructionai vehicle for a course in
microprocessors, and NSW to satisfy the needs of a family of Tool Bearing Hosts.

The NSW requirements for a TBH are easily and economizally satisfied by PRIM
capabilities. These requirements {connectivity to the ARPANET, file handling, control of
tasks (start, stop etc.,) and user accounting end status reports) are all available to NSW
by upgrading the existing TENEX to a TENEX TBH operating systeam. New tools can then
be added by building new emulators within PRIM; as the library of emulators grow, the
MLP-900 will provide a family of NSW tools. The first of these emulated systems 1s a
Univac 1050 MOD 2, which serves as a base computer in many Air Force installaticns.
The instruction set (CPU) for this wirtual machine has been compieted and s currently

* Qakley, John, "A Comparison of Two Microprogrammable Processors: PDP-11/40E
and MLP-900," Department of Computer Science, Carnegie-Mellon University, May 1975.

"
PR _ . ‘
T O T N T T TN TP

Lt e BN SRRl
e M b &P it D alair NS

El
3
o

Al

b2

3k iy e B M N 1 7.

;

Rl A At el b e TR T YT T e

3 PROGRAMMING RESEARCH INSTRUMENT 21

K: being debugged. The implementation of the I/O environment required to complete this
3 task shouid be available by August 1975. We estimate 3 to 4 man-months for the
’ average system emulation effort. On an average the emulated system wil! run 2 to 10
times siower than real time. For this compromise in speed, the economical advantage of
building emulators over electrically interfacing system and debugging software as a host

machine on the ARPANET is significant. (For new Host/IMP interfaces the average costs
are $20,000 hardware and 4 to 6 man-months of programming and testing.) In the case
of the Ul050, a reasonable ARPANET Host interface is not economically feasible. Of
greater advantage for the NSW environment is the capability of bui'ding emulators
richer in debugging capability than the original systems, simplifying the user’s
programming tasks.

DEBUCGER

PRGNV

Work is proceeding on a new interactive debugging facility which allows a user--an
emulator implementar or the user of an emulated machine-~to inspect and/or modify his
PRIM environment in a form which is understandable and comfortable to him.
Implementors work in terms of MLP registers, control memory, target memory, and GPM
cod. user programmers in terms of their machine’s memery, registers, and assembly
language. (The implementor’s facility is improved over the old debugging facility only
to the extent that he can use the "user” facility when the mood sirikes: most of the
L imptovement is directed toward the user of the implemented target machines, who
' ' formerly operated in octal or a primitive subset of his assembly language.) In order that
o the debugger handle the various target machine languages, each machine mplementor
k- must now also generate the various tables and routines required by the debugger to
2 “understand” his machine’s assembiy language. We anticipate that, at least for most
minicomputers, the work to develop the necessary tables will be insignificant in relation
3 to the work required to develop the emulator itself.

o e fE

3 The primary n0al of this work is the creation, tor each emulated machine, of &
familiar debugging environment with a minimum of new rules and strange syntactic
forms. Due to the great diversity of machines-and more importantly, of assembly
languages-the overall system is designed to be extremely flexible in its syntactic
E demands. A secondary goal of the work is the creation of a relatively simple--though
L not necessanly familiar--specification of the machime-specific items which must be
) encoded to add a new machine to the debugger’s vocabulary. Adding a new machine fo
the system requires the cooperation of both the implementor and PRIMi system
4 personnel; the mitial machine vocabuiary, including AN/UYK-20, PDP-11, and Univac
1050, 1s being generated as part of the initial effort. To the extent that this secondary
goal is in conflict with the first goal, the interface specification wili suffer. Design work
on the sysiem is now completed, and implemeniation of the initial varsion 1s under way,
with a scheduled release date of July 197%.

The MLP-900 continues to operate reliably and throughout FY75 we experienced
: only three hardware ‘aiiures. The system has been avallable to the users whenever
s TENEX was avalable. Effort to locate and correct marginal operations, especialiy within
the TENEX interface subsysiem, continues, for we have evperienced occasional

gt S o T T s g = e

PROGRAMMING RESEARCH INSTRUMENT 22

unexplained malfunctions. These malfunctions have keen limited to main memory
transfers, aftecting the current user only, and do not require a system restart.

The operational reliabiiity of the MLP-900 is stated with guarded optimism because
to date we have had minimal use of the system. During the past yeer we estimate
about 70 hours of MLP-900 CPU time with six different users running or debugging five
different emulators. Continued reliable operation as the user population increases and
more emulators become available would provide sufficient reliability data. We are
optimistic that this will occur in FY76. However, the MLP-900 currently runs
diagnostics two hours each evening in order o keep it exercised.

FUTURE EFFORTS

The gceal for PRIM in FY76 1s to evaluate its utility as a service on the ARPAMET. To
this end we will continue (o work cooperatively with the aforementioned users, seek
new users, and complete PRIM’s transition from experimental testbed to a new service
on the ARPANET.

At the start of this contract period, in FY76, PRIM will have the beginnings of a
library of emulators: FDP-11, PDP-8, AN/UYK-20, U1050 and Nova. With this hbrary of
emuiators (of minicomputers), PRIM can offer an additional service for users interested
in experimenting with programs for minicomputers. With the power of TENEX (editors,
compilers, debuggers, etc.) we can offer a significant amount more development power
for the multitude of minicomputer users. We intend to explore and expand this use of
PRIM throughout this proposal period. Simitarly, we intend to aid programs such as the
National Software Works tu use PRIM as a special design tool available on the ARPANET.

A major portion of our future effort will be spent in building an MLP tool tor NSW.,
A teol, in NSW, 1s a logical device capable of responding to commands of the user.
Implementation of MLP tools will require rewriting of the MLP-EXEC to conform to NSW
specifications. The new EXEC (MLP-TOOL) will provide a standard interface tc all tools
runaing on the MLP-900. The first of these tools being implemented is the UNIVAC
1050 MOD2. We are contemplating the need for at least two more, currently
unspecified virtual tools.

Each of the tools developed for NSW will also require at least two levels of user
interaction requiring additional software development within the .P-TOOL. A user can
specify a tool, re.,, UlO5B0, either as a bare CPU or with operating system. In either
case, the users next request will probably ve to lcad a specified program. n one case :
the command will be interpreted by the MLP-TOOL and in the latter case by the target 4
system being run by the MLP-900. The latter case will be the prommnent one being x
4 used by NSW users, and the implementation task 1s one of making most of the loads,
: gets, configuring /O environment invisible to the user. The PRIM user currently
commands the system to perform ail these tasks to provide the fiexibility required by
the researcher. The NSW user is typically a programmer trying to create and debug a i
prograra, and NSW provides the tools for facilitating this task.

PROGRAMMING RESEARCH INSTRUMENT 23

Another program we intend to support 1s the NELC effort to design a System Design
Laboratory, mentioned above. SDL is a tool for solving some of the problems
associated with designing large systems in the Navy Laboratory Communities. The
MLP-900 will provide some of the original capabilities required by SDL. Therefore the
tentative plan is to move the MLP-900 to NELC in San Diego, Califormia. Planming the
move, training NELC personnel, and helping in design of the SDL could require a
significant amount of PRIM project effort. SDL will continue to support all users via the
ARPANET so that the MLP-900 users except for 3 to 4 months of nonavailability will not
be aware of this move. This would bring the PRIM project to a successful conclusion by
early FY77 with all major preject goals being achieved: creation of the facility, using the
facility in nontrivial wa: and transierring the technology to users within the military
community.

REFERENCE

1 PRIM Users Manual, IS|/TM-75-1, April 1975.

EXPL VLR ARTIW §- FL - %,

RSP

B e I S R i i i R T T T

24

AUTOMATIC PROGRAMMING

Research Staff: Robert M. Balzer

Neil M. Goldman
3 Norton R. Greenfeld
: Walter R. Ryder
E John J. Vittal
David S. Wile

Research Assistant: David Wilczynski

3 Support Staff: Chloe Holg

INTRODUCTION

The goal of ISP’s Automatic Programming project is simply to allow experts of an
application area who are not programmers to functionally specify their application
directly to a computer system, with the system transforming this input into a precise
2 operational functional specification of the application. Such an accomplishment
Y represents a testable model of the proposed application which could be used as follows:

¢ As a precise specification of the desired application program from which a
human programmer could generate the application and against which the
implementation could be tested.

o To examine the tunctional behavior of the application against the requirements
and, if necessary, to modify the functional specifications until they satisfy the
requirements.

: ® As the input to an automatic test data generator which would develop test cases P
to comprehensively exercise the model.

; Because DoD’s activities are so diverse, such a system must be capable of accepting
: specifications for a wide variety of applications.

.3

; it is well known that software is in a desperate state. It is often unreliable,
1 delivered late, unresponsive to change, inefficient, and expensive. Furthermore, since it i
is currently labor intensive, the situation will further deteriorate as demand increases ;

b

k ;

R W FF T

AUTOMATIC PROGRAMMING 25

and labor costs rise. Thus DoD faces one of two choices: either increase the
productivity of highly trained, carefully selected specialists or reduce the training
requirements through automation, thereby broadening the base of qualified users.
Structured programming, built around the concept of discipline, addresses the first path,
the approach we propese the second. We feel that the first approach will perpetuate
much of the current crisis as systems continue to become more complex. Only
automating the process can control the encrmous complexity, improve the reliability,
modifiability, and efficiency, and reduce the cost. For this approach to be successful,
the system must acquire and use a semantic description of a domain--a particular
universe of discourse--to understand the user’s statements, fill in omitted details, and
maintain consistency.

APPROACH

Functionally, the two most important characteristics of our nrogosed system are its
independence from any particular problem domain and its attempt to deal directly with
nonprofessional computer users without the intervention of computer
programmers--choices which have largely dictated the direction of the project. Domain
independence requires that the domain "physics"--its objects and their relationships
with other objects, its laws, its transformations, and its constraints--be available in a
processable form within the system and that the system be general enough to deal
effectively with a wide variety of such physics. Direct interaction with nonprofessional
computer users means that both the physics and the problem statements will be in
problem-oriented (as opposed to computer-oriented) terms, preferably in natural
language, and that they will be "loose” descriptions containing incomplete, inconsistent,
and irrelevant statements rather than a precise formal structure. The primary goal of
our systen. is to acquire from a dialogue with the user the physics of the loosely
defined domain, structure it, and use it to understand further communication specifying
an application, to remove the imprecisions from the specifications, and finally to
organize the separate pieces into an operational and testable specification which
accomplishes the user’s stated task.

The constraints and restrictions of the computer have increasingly been
incorporated into programming advances for several years. They are manifest in better
languages, automatic storage mechanisms, and optimizations of many forms. On the
other hand, the structure, constraints, and limitations of the problem domain have
generally not been incorporated into programming systems. A major theme of
automatic programming (in fact the characteristic distinction between it and conventional
programming) is the use of such knowledge--an issue which raises a number of
questions. If the system is to understand something of a domain, how is the knowledge

AUTOMATIC PROGRAMMING 26

on which this understanding is based to be represented? What procedures can be
made available for expioiting this knowledge in guiding the system’s interaction with a
user and in generating programs? How, in particular, is the essentially nonprocedural
information in constraints and limitations to be reflected in a procedural form? What
can be done to help identify inconsistencies? How can the system be given a capacity
for inference similar to that which forms the mainstay of human communication and
which allows obvious details ‘o ba left unspecified? Will the system be able to
understand its own products we.i enough to be able to modify them in response to
changed requirements? Answers to these questions define the front on which
important advances in specification acqisition and analysis will be made.

Our system contains four knowledge bases: knowledge of specifications and their
structure (how specifications are organized from parts, what constitutes a well formed
specification, etc.), knowledge about application specifications and their acquisition (what
kinds of imprecise specifications are used, how the resolution of one imprecision may
affect the resolution of another, etc.), knowledge about domain descriptions and their
acquisition (what constitutes a well formed description, how information from such a
description can be used to resolve an imprecision or affect the program organization,
etc.), and finally knowledge about a specific domain (such as what objects exist, how
they are related to other objects, what actions are performed, what constraints exist,
etc.). Of these four knowledge bases, the first three are fixed. Only the last, the
knowledge of a particular domain, is acquired and changes from ptoblem to problem,
This is feasible because the domain description knowledge base definas the form of the
acquired description--basically as a :miverse of types and interrelationships between
them. It is through such a simple model that we can concentrate on iniprecision removal
and program organization rather than confusing these with the specifics of a particular
domain,

To concentrate on this knowledge extraction and domain structuring activity, we
have assumed the existence of a natural langu..ge parser which transforms the user’s
input into a parsed case structure. Such a parser is currently beyond the state of the
art, but this goal is actively being pursued by other groups and we expect it to be
available by the time our project is ready to assemble a total system. Until then, we
are manually transforming the natural language irput into the case-structured form
required. If such a parser does not materialize, we would have to use a more
restrictive and formal subset of natural language.

As a second means of limiting the scope of our work, we have decided to omit
efficiency concerns for the operational specifications generated; we have focused on
generating a logically correct operational specification for the user’s needs without
sttempting to optimize it. This has greatly simplified our effort by allowing us to

i ae T Ak e

2o sl ki o1

AUTOMATIC PROGRAMMING 27

directly model the user’s domain in a data-representation-free manner through an
associative data base, and hence obtain operational specifications which are ruch closer
to the user’s conception of the problem. By not having to introduce extraneous details
(such as data representation) during the construction phase, we have been able to
concentrate on the specification’s logical behavior. Furthermore, we firmly believe that
such representation-free and behaviorly specified descriptions are the correct way to
specify applications and that optimization should occur during a separzie and later
implementation phase (not part of this project). it is clear that such an approach would
greatly simplify the maintenance problem. The logical-behavior specification would be
modified and then reoptimized through reimplementation.

We are also limiting the range and type of demains aliowed. In addition to size
limitations, these domains are characterized by such features as a rich structure ot
types, no parallelism, no second or migher-order constraints or inference rules, and no
time dependencies other than ordering.

The final and most important means of controlling the scope of the project and
thereby assuring orderly progress are the types and amounts of imprecision aliowed in
the input. If no imprecision of any type is allowed, then the input is already in a formal
programming language and though no work is required to output an operational
specification, the notion of dealing with nonprogrammers has completely disappeared
and all that has been produced is the design of a better (or worse) program
specification language. On the other hand, if no restrictions are placed on the
imprecisions allowed in the input, the task clearly becomes infeasible. Between these
two extremes can be determined an allowed level for each type of imprecision which so
significantly simplifies program specification that nonprogrammers can deal directly with
the system while keeping the task of removing these imprecisions manageable.

Two valid scientific questions have been raised by our approach. The first
questions the viability of a domain-independent approach at this time. The concern is
that not enough is known about domain descriptions and how they differ to build a
domain-independent system. We {eel that by attempting domain independence we force
ourselves to address the issues of domain structure and of obtaining guidelines from
this structure without allowing a particular structure to become embedded in our
system. Also, by remcving representations from the specification, we have removed a
great deal of dependence on the particular domain structures.

The second question assumes that the first has been answered and therefore that a
domain-independent system such as ours can generate unoptimized representation-free
programs. It questions whether automatic optimization of such programs is possible.
This is primarily z2n issue of data representation selection. Other research groups, most

.

S s e gt o

Ll

e

AUTOMATIC PROGRAMMING 28

notably Rochester, are concerned with these issues. They are, however, primarily
concerned with implementation representation of logical structures such as sets or lists.
A higher order representation selection issue exists which addresses the logical
aggregation of data--what items should be collected together to form a record, what
aggregations should be treated as sets. how they are accessed and ordered, etc. Such
work is unfortunately not currently being investigated. However, three of the four
possible benefits of our project are independent of such work. Only the use of our
output specification directly as a practical programming language requires the automatic
representation selection problem to be solved.

SPECIFICS OF THE APPROACH

We are building a system with two major components: Domain Acquisition and
Model Completion. The former sequentially processes a set of statements describing
the user’s problem and the <domain in which it exists. [t is responsible for extracting
from these statements the description of the object being manipulated, the actions
performed on them, the criteria necessary and sufficient to perform these actions, the
constraints which must be satisfied, and the rules for inferring information not explicitly
stated. This information may be given directly, may be inferred from example usage, or
may be assumed in order to make sense of the input. Some of this information may
have been previously acquired and saved in a domain description.

This component is implemented through a production system in which each
transformation rule has a pattern which, if found in the input, activates the rule. An
activated rule will typically assert some extracted krowledge in the associative data
base and rewrite the input with the extracted information omitted or transformed. This
activation process is continued until no rule matches the (transformed) input. Then the
next input is processed.

A production schema was chosen because of its orientation toward case analysis. its
facility for expanding as new rules are added, and its ability to accept manual
transformations for unimplemented rules (see the Accomplishments subsection).

During these transformations, when an ambiguous interpretation is noted, one of
three actions is taken: the problem can be kept for later processing in the hope that
new information will resclve the ambiguity; the user can be directly asked to resolve
the ambiguity; or the system can establish a backtracking point, assume one
interpretation, and be prepared to back up and assume the other. Currently, only the
first two options are used, since our system has no backtracking capability.

-

g
!%
[

INECS SN IS SN

TR TR

AUTOMATIC PROGRAMMING 29

The Model Completion component is responsible for all intarstatement processing.
!ts main function is to form a precise operational specification by organizing the actions
referenced in the individual statements into an appropriate control structure. These
actions are organized into sequential segments or asynchronously activated daemons in
a two-stage process. First, the needs, requirements, and results of each action are
analyzed to determine any implicit ordering restrictions. This partial ordering is then
merged with any explicit partial ordering specified in the input to produce the final
ordering restrictions. The second stage determines which actions should be treated as
asynchronous daemons and removes them from the oruering. It then attempts to find a
total ordering consistent with the restrictions. Finally, all action descriptions, action
invocations, and ob’ect references are transformed into an executable form.

RELATION TO OTHER WORK

Our project is related to other similar work primarily at MIT, Stanford, and IBM
Yorktown. The MIT effort is aimed at producing highly optimized programs for a
specific domain through built-in knowledge of the general methods and techniques of
the domain particularized to the user’s needs. Thus, although both our domain
descriptions are similar, we focus on acquiring this description and determining logical
behavior; they, on the other hand, take these as given and are concerned with
particularizing them and choosing an optimized method. The work at IBM is very similar
in approach to that of MIT, though for a very different domain. It also differs from the
latter in that it conceives of two systems, the first of which is a programming language
designed specifically for the domain which embodies the current knowledge of model
particularization, When this system is completed, a user will be able to specify his
problem as a specialization of the domain and be questioned by the system for the
particulars. This will enable the efficient generation of users’ p-ograms, although the
language and interactions are formalized. The second IBM system attempts to use a
natura! language interface to loosen this rigidity.

Both of these efforts, like our own, are aimed at nonprogrammers. The Stanford
project, however, is aimed at reducing the amount of detail that a programmer must
specify to generate a program. [t is thus concerned with different methods of
specifying an algorithm, such as by input/output pairs, traces, predicates, and/or
description. 1t is also concerned with programmer areas such as list processing and
sorting rather than user domains, as are the other projects.

&t

JURTLIPTREIS PN L

AUTOMATIC PROGRAMMING 30

ACCOMPLISHMENTS

1. Semi-automatic acquisition of a real~world example domain. Qur system, with
the help of a small number of manual transformations (to be removed later as
implementation proceeds), accepts a parsed version of a loose natural language
description of a real-world domain and extracts a processible description of the domain
in terms of the objects, their relatioriship with one another, the actions they participate

in, and the constraints they must follow.

2. Acquisition of types, events, and relations. As part of the above domain
acquisition, the system identifies examples of types, events, and relations in the input
and builds descriptiorz of them. For instance, use of a relation or event (verb) with
new cases (English keywords identifying an argument) and/or argument types causes a
more generalized description of the relation or event to be constructed.

3. Discovery and implementation of the "knowledge acquisition” heuristic. When a
refation instance is asserted to be true, the relation may have several preconditions
associated with it which, if not satisfied, indicate a contradiction. If one or more are
known to be faise, then a true contradiction exists and the assertion is not allowed.
However, if a precondition can be teither proved nor disputed--which is the most
common case when new information is being acquired--then the "knowledge acquisition”
heuristic states that it should be assumed true. This heuristic enables the system to
acquire information "by side effect” through additional structure necessary to support

explicit information.

4. Requirement analysis and input/output determination. An implemented part of
Model Completion analyzes the requirements and results of each event (currently
hand-generated) to determine a partial ordering of the events necessary to ensure that
requirements are produced before being required. This partial ordering will eventuaily
be merged with explicit ordering statements from the user to produce an ordering space
within which a total ordering for the generated program can be found. This analysis
also determines input and output data for the program by finding, respectively, the data
used but not produced, and the data produced but not used.

5. APl. Our AP system is based on an associative relational data base. The
assertion and relrieval mechanisms necessary for such a data base have been
incorporated into APl--an extension to INTERLISP. APl also includes mechanisms for
maintaining the consistency of the data base through constraints and for implicit data
through inference rules applied when required data is not found explicitly. APl is also
intended as the language in which we generate programs so that they can also utilize an

associative relational data base. Through a reimpiementation ¢f the data base, an

order-of-magnitude improvement in speed was achieved.

o

R e (e - - PP e T M R L C 2o e e L R N B

AUTOMATIC PROGRAMMING 31

6. Transformation debugger. We have implemented and are using an interactive
debugger for production systems which raises to the transformation level debugging
facilities normally found only at the language level. It records the action associated
with each transformation, erables conditional breakpoints to be inserted in or between
transformations, enables manual transformations to be built and remembered, and
eventually will allow back up to previous states. This greatly facilitates our style of
example-driven constructions of the transformation rules. That is, rules are built only
as needed, but are made more general than the specific example demands.

7. Programmer’s interface. While looking for a suitable implementation language,
we designed and built a mechanism for transforming interactive programming languages
into programming systems by utilizing the programming tools and environment already
constructed for INTERLISP, although this was not directly related to project goals.
While useful in itself as a means of increasing programmer productivity, this work had
its real significance as a model for ARPA’s National Software Works project.

CURRENT STATUS OF PROJECT

The Automatic Programming project was terminated at the end of the current
reporting period. It will be superseded by the Specification Acquisition from Experts
(SAFE) project, whose plans are as outlined below.

We have decided to develop our system in the context of a real-world (albeit
simplified) problem. We selected the militarily significant domain of first-level message
distribution, and have extracted from an Army functional specifications manual a short,
simplified, and very high level loose description of an implemented system.

~% With the help of some manual transformations this description has been processed
and analyzed by the Domain Acquisition component. The Model Completion component
is largely unimplemented, but (as mentioned earlier) one part which takes the
requirements and results of the actions described and produces the implicit partial
ordering is working. Furthermore, it identifies the inputs and outputs of the system by
finding, respectively, the information used but never produced and the information
produced but never used.

g
1
;
N
A

RENP LS T Fy Y XS

T TR

AUTOMATIC PROGRAMMING 32

In FY76 we plan to finish the message distribution example and to select and
present to our system three different real-world domains of approximately the same
size and complexity as the message distribution domain. Such domains are
characterized by:

a. Natural fanguage specification of about one typewritten page for the combination of
domain and problem (this must be manually transformed into our actual input
ianguage).

b. Input specification must adhere to system’s imprecision conventions.

¢. Input specification must adhere to system’s domain restriction conventions {such as
no parallel control structure, no second order constraints or inference rules, etc.).

d. Not more than 25 object types, 15 relations on those object types, 10 actions, and
100 to 150 total instances of all objects (first 3 restrictions limit size of domain
which must be understood, while last restriction limits size of domain which must be
executed and is designed to prevent overloading either the associative memory or
LISP memory).

As we address new domains, more transformations will become necessary to handie
new situations previously unencountered. The new transformations may interfere with
the existing ones. We will have to identify and resclve such conflicts.

The main goal of these studies will be to determine the generality of our system in
terms of the amount of overlap, and the amount of conflict, with existing facilities. In
some sense, we must develop an estimation of the size of the "vocabulary” (i.e., the
facilities) needed to handle domain descriptions. We will also be studying how to
erecify a domain and application and how to represent them in the system.

This understanding of domain and application descriptions will allow us to accept
more imprecise and incomplete specifications by resolving or filling in information from
information specified elsewhere and through knowledge of domain structures and
interrelationships. We will continue to push on this front untii we can handie
specifications typically found in functional specification manuals.

If we were totally successful in attaining domain independence, then new domains
could be accepted without any modification of the system by merely providing their
domain description. We do not expect to achieve such a level of independence.
However, our goal is to minimize such modification so that by the end of FY76 we can
acquire and handle a new domain of roughly the size and complexity of the
message-distribution domain in less than a week,

ER et

Ao I

AUTOMATIC PROGRAMMING a3

A A ARD AW NNV
va. s abs MAMIEHER SLan . ot AT AR

in FY77, while continuing to develop the facilities described above, our main focus -
will be on the sizing issues raised by dealing with large unsimplified rea! world '
problems. Th.se problems of enlarging size arise with almost all aspects of the
problem: the problem specification and vocabulary, the number of ambiguities and i3
number of interactions with the user, and the possible interactions between the
specified actions, etc.

Dealing with large domains is critical, however, if the project effort is ever to pay
ofi. In large programming efforts, communication problems between team members
abound, compatibility and consistency are of paramount importance, and the complexity
is overwhelming for any individual. This situation is tailor-made for automation of
specification acquisition, analysis, consistency and completeness validation if we can
provide a system which scales up from current laboratory demonstrations. '

Assuming that the system has been sized to handle significant real-world problems,
in FY78 we would like to work with a military user to acquire, analyze, and debug the ;
specification of a task currently being implemented within the military. Since the i
program specification produc-. would be highly inefficient, we would expect it only to :
be used to test that the specification matched the user’s intention, that is, that the |
specified system behavior matched the desired behavior. This is not normally the case iy
in real projects where the number of errors and inconsistencies in a specification .
usually exceeds those produced in the implementation. Having a testable specification
would go a long way in reducing such design errors before implementation began.
Furthermore, as a precise operational specification of the problem, the specification
itself or natural language paraphrase of it could be used to resolve for the human
programmers any ambiguities in the original specification.

e T

S LS g

34

PROTECTION ANALYSIS

Research Staff: Richard Bisbey I1
Jim Carlstedt

Consultant: Gerald J. Popek

Support Staff: Betty L. Rendall

THE PROBLEM BEING SOLVED

During the past decade some computer manufacturers have claimed that certain of
their general-purpose operating systems (ie, systems with generalized
information~sharing facilities) were secure and could be used to store, process, and
protect classified or sensitive information. Unfortunately, these claims are overly
optimistic; a general-purpose operating system that is secure against malicious attack
does not actually exist in either the commercial sector or the research community. The
problem lies partly in both faulty design and faulty implementation. While long-term
research is progressing in the design of secure systems and the verification of
software, the computer user will not feel its impact for several years. Currently there
are more than 6000 compuler systems in the DoD and its contractor facilities, covered
by the DoD Industrial Security Program. Many of these facilities require resource
sharing at multiple levels of security, but cannot achieve it because of operating system
vulnerabilities. (By "vulnerability” we mean a protection error that allows the integrity
of the system itself--and thus its protection mechanism--to be compromised. System
integrity is obviously the most critical aspect of operating system security, since
without it the protection policies of the system with respect to the integrity and privacy
of the user’s data cannot be assured of correct or complete enforcement.) The goal of
this research is to help remove these vulnerabilities by developing efficient techniques
and automatable tools for delecting them. There is very clear evidence in the military
regarding the lack of muiti-level security at the operating system level. The cost to the
military in not having such security is high in dollar expenditures and in risks to
classitied information,

In what follows, the terms "techniques” and "tools” are used to denote error-finding
aids developed by the project. The former denotes general methods or strategies,

g ot sw ok

P R T At 2 arn D,

PROTECTION ANALYSIS

while the latter denotes procedures for applying these methods or sirategies. The
procedures are expressed in varying degrees of formality, and are not written in any
particular programming larguage. Computer programs that implement them are
necessarily specific to particular operating systems and thus are the responsibility of
the users of these tools.

RELATIONS TO OTHER WORK

The work described here is only one of a number of existing or potential efforts to
improve the security of operating systems. Perhaps the best way to indicate this
project’s relationship to other work is by means of a "subject tree” showing its position
in the total field of computer security. (See Fig. 4.1.)

COMPUTER SECURITY

Physica!l installation
Operations and maintenance personnel
Communication facilities
Storage facilities
OPERATING SYSTEMS (PROTECTION)
Theoretical studies
Design of new systems and mechanisms
ENHANCEMENT OF EXISTING SYSTEMS
Design modification
ERROR DETECTION
Formal verification
INFORMAL METHODS
Dynamic methods (penetration testing, auditing)
STATIC METHODS
Evaluation activities
TOOL DEVELOPMENT
Simple debugging techniques
ADVANCED AUTOMATED AND SEMIAUTOMATED TECHNIQUES

Figire 4.1

3 5t T et SRR

X

Al s

ST

Siireo fVr G o e gt

P sos

’

7

PROTECTION ANALYSIS 36

This is only a rough taxonomy: there are many other ways to categorize work in
the security field, and many projects include work in more than one category.
Nevertheless, it does indicate areas of actual and pctential work and the relationships
between them.

The distinction between operating system security and other aspects of computer
security needs no explanation here. There is much current activity in this area, some
of it concerned primarily with attempts to gain a better undzrstanding of basic problems
and possibilities (e.g., the work at Rutgers Universily), some with the design of new
systems incorporating more advanced protection schemes (e.g., the work at
Carnegie-Mellon University, the University of California at Berkeley, and UCLA), and
some with the enhancement of current operating systems. The latter category consists
of both redesign work whose goal is essentially the same as that of new-system design
{e.g., the effort at MIT to identify a minimal security kernel for Multics) and work
concerra. 3 with the problem of error detection.

Error detection methods can be classified first of all as either formal or informal. In
the former category is verification of software in general via "proofs of correctness”
(e.g., the work in this area at iSl), with verification of operating systems presenting
special problems (being studied at Stanford Research Institute). Informal methods,
typified by traditional debugging techniques, fall into two major categories: (1) dynamic,
involving the execution of the target program or system, and (2) static, relying primarily
on the analysis of program listings and system documentation. Dynamic techniques
have been widely used to find protection errors, either by including special audiling
routines in the system itself or by employing "blind” penetration iechniques (e.g., earlier
work at System Development Corporation).

penetration attempt is more likely to succeed if it employs static as well as
dynamic techniques (e.g., earlier work at Rand and ISl). When the object is to produce a
more general evaluation of the security of an operating system, a large-scale
penetration effort may be launched to find as many errors as possible in a target
system (e.g., current work at System Development Corpcration and Lawrence Livermore
Laboratory). Currently, such error detection activities rely more on the organization
and expertise of their personnel than on the effectiveness of their tools. This is an
expensive and, we believe, unnecessary situation. For this reason, IS’s Protection
Analysis project is engaged in an effort to develop more effective evaluation techniques
and tools, primarily those that can be used in the static mode by people with less
knowledge of security considerations,

Y e

Yoo

IS T

RN A

PROTECTION ANALYSIS 37

APPROACH
The approach taken is an empirical one, based on two observations:

1. Protection errors fall into distinct classes or "types.” Errors of the same
type appear many times, not only in functionally different portions of the
same operating system, but in different operating systems as well.
Furthermore, there is reason to believe that the number of error types
representing vuinerabilities in operating systems is finite and
small--probably not more than 25. This is based on an initial analysis of a
number of errors from a variety of operating systems including 05/360,
GCOS, Multics, Exec-8, and TENEX and error categorization efforts by 1BM
[1] and others [2]; it is supported by the proposition that system integrity
depends on a quite limited number of design requirements.

2. "Error patterns” representing error types can be used as effective criteria
for searching for protection errors of those types. We have experienced,
and witnessed in others, a large difference in effectiveness between a
"blind search" and a search for errors of a particular well-described type.
We have observed that even persons with no previous experience in
protection analysis can find protection errors when given a specific error
pattern to guide their search.

The approach is thus twofold: (1) to derive the error types and (2) to generate for
each error type a tool or technique that can be applied in an automated or
semiautomated fashion to find protection errors that are instances of that error type.
Error patterns are the common vehicle for the approach.

To derive the error types, descriptions of protection errors are initially converted
into error patterns by .isting the minimal set of conditions that constituted the original
error. Each pattern is generalized by substituting more generic or abstract features
for their more specific counterparts and by deleting qualifying details, both without
affecting the essence of the conditions themselves. This process results in a hierarchy
with the most general and abstractly described patterns at the upper levels and the
most specialized and concrete ones at the lower levels, The converse of generalization
is "instantiation,” where a pattern is transformed by substituting for more general
features the more specific counterparts that occur in particular classes of operating
systems or particular functional areas, resulting in a more concrete pattern,

ot a wdD

L

PROTECTION ANALYSIS 38

Conceptually, an error pattern forms the reference input to an automated or
semiautomated error detection algorithm that is general-purpose in the sense that it can
be used to find instances of the corresponding error type in any of a large class of
operating systems. Prerequisite to automating such an algorithm is the definition of a
“comparison language"” whose objects are the features of the pattern and whose
structure and notation are suitable for expressing relevant portions of the target
system. The error detection process thus consists of two steps: (1) the "normalization”
of the operating system by tiltering out irrelevant features and mapping the relevant
features into the comparison language and (2) searching the normalized representation
for feature combinations matching the given pattern. The first step is
system-dependent, but can be partially automated in at least some cases. The second
step 's system-independent and in principle can be fully automated. For convenience
and relative simplicity, the choice of a comparison language and the design of
normalization and comparison algorithms are done on a pattern-by-pattern basis.

PROGRESS

Work on pattern-based protection evaluation was begun in October 1973. The
following has been accomplished:

1. Project design. The need and potential utility of such a project were
evaluated, the approach was develiped, and the major tasks--pattern data
base development and design of normalization and error detection
algorithms--were defined in terms of processes, information flow, and
associated problems.

2. Collection and analysis of protection errors. Informal descriptions of
protection errors from a variety of operating systems, including 05/360,
GCOS, Multics, Exec-8, and TENEX, were collected and initial versions cf the
correspending first level-patterns were generated for these errors,
Several of the first level-patterns have been generalized.

3. Feasibility test. To test the feasibility of the approach, an experiment was
conducted in which a single pattern was applied to portions of the Multics
operating system. The experiment was carried cut as follows: An error
type was selected for which pattern features could be fairly easily
described. A set of guidelines were stated for recognizing instances of
this pattern. The guidelines were applied manually to several microfiche
listings of Multics source code, resulting in the discovery of several
security errors.

TIRY sl aialaa ot ol a i i de s R N L ” =

i
3
%

g

3

i

b)

3

¥

4

K

LY

P—

DA yverar S —

PLILLINORETTIENS. omm Swr T 4PN WPy X oar A e et~ Paoemd oA K Miiin bt Tairs SISURT™

ARPANET were processed by the program, and the output was manualy
examinad for errors. Previously unknown security errors were found. A
second prototype package for discovering errors of a different type has
been built and is being tested.

Af'- PROTECTION ANALYSIS 39
&
:
',f‘
£ 4. Prototype error detection packages. A computer program was written to
% automate much of the error detection process described in item 3. Source
; copies of portions of the Multics operating system obtained via the

§ 5. Reporting. A research report describing the approach was prepared [3],
together with a detailed report describing the first error type and
i prototype programs used in the Multics experiment [4],

RESEARCH AND DEVELOPMENT

The Protection Analysis project will continue the development of effective,
economical, and reliable detection techniques and tools for security errors in operating
system software. As indicated above, this work falls into three categories:

1. Error collection and analysis. The purpose of this activity is to extend the
pattern data base "herizontally,” in erder both to identify new variations of
existing patterns and to increase the potential coverage of the techniques
developed with respect to the error types to which they may be applied.

2. Pattern analysis and data base development. The data base must be
extended not only "horizontally” but also "vertically" by generalizing
existing patterns to the more abstract levels at which interpattern
relationships are more easily recognized and at which error types can be
most effectively identified and represented. While this requires careful
analysis, it vields insights valuable ‘o the invention of error detection
algorithms, simultaneously improving the quality of the patterns themselves.
Expansion of the error patiern data base will necessitate the continued
development and refinement of a formal notation to express patterns in
terms of both the protection policy and the error conditions.

3. Algorithm development. As indicated earlier, this is actually a set of
activities, one for each error type. Qur plan is to concentrate on that type
or those types for which the payoff/cost appears to be grr:atest, where
payoff is estimated in terms of the "exploitability” of errors of this type in
existing operating systems and where cost is a measure of the difficullies !
anticipated in algorithm development. Depending on the error type, the
difficulties here can he substantial; the conditions of the search pattern

ok ks atih 4

PROTECTION ANALYSIS 40

must be expressed in terms of static features that can be recognized in a
system description, rather than dynamic features that have representations
only in an executing system. There is, moreover, little precedent to draw
on for techniques of operating system normalization. Fortunately, by
relaxing somewhat the conditions of a pattern, it appears that normalization
difficulties can sometimes be eased considerably at the expense of scme
additional screening of error detection output.

4. Transfer documentation. Much of the documentation will originale during
the development activities themselves. However, a final set of user
guidelines will be required when the development of a prototype has been
effectively completed. We also include in this category interim reports on
error types and patterns, detection techmques, system fixes, design
implications, and general protection insights.

IMPACT

The work described here will have an impact in several areas. Most immediate, of
course, is the impact on evaluation activities for existing operating systems with respect
to the reliability of their security mechanisms. The empirical basis of the technique
makes it easy to incorporate new error types as they are identified and as algorithms
for them can be developed. The techniques can thus be used also in computer
acquisition as one of a set of standard tests which must be met for system acceptance.
Continuing back up the "subject tree" displayed earlier, we can anticipate impacts at
every level. As seen in the Multics example [4], static pattern-directed tools can also
suggest corresponding dynamic error-detection techniques. By negating conditions
found in error patterns, assertions can he identified for use in formal verification of the
protection aspects of operating systems. Along the same line, the data base of error
patterns is useful in the repair or modification of existing systems; since a pattern is the
minimal set of conditions that must hold for an error of that type to be present, repair
is simply the negation of at least one of the conditions. Similarly, the pattern data base
forms the basis for a "best practices manual," i.e., a list of errors that should be avoided
in the design of new systems and protection mechanisms. Finaily, the analysis needed
to derive error patterns, to generalize ther to abstract levels, and to develop
associated error detection algorithms vyields insights thai contribute to a deeper
3 understanding of protection iiself.

PROTECTION ANALYSIS 41

> ot L AMR R AR,

REFERENCES

1. McPhee, W. S, "Operating System Integrily in 0S/VS2," IBM Systems Journal, Vol.
13, No. 3, 1974, pp. 230-252.

2. Anderson, James P., Computer Security Technology Planning Study, US. Air Force,
ESD-TR-73-51, Vol. 2, October 1972,

3. Carlstedt, Jim; Bisbey I, Richard; Popek, Gerald, Pattern-Directed Protection
Evaluation, USC Information Sciences Institute, ISI/RR-75-31, June 1975.

4. Bisbey Il, Richard; Popek, Gerald; Carlstedt, Jim, "Inconsistency of a Single Data
Value Over Time," USC information Sciences institute, 1975.

LI DTN+

: o Foee 1y
B B T ¥ R R S 0 VT PR E NS, Crie F Nayowiymars poas PR N, S ISR S BT 1 e T TSRS

a2

INFCRMATION AUTOMATION

Research Staff: Donald R. Qestreicher
Robert II. Stotz

John F. leafner
Richard C. Mandell
Jeff Rothenberg
Ron Tugender

Rescarch Assistant: Larry Miller

Support Staff: Katie Patterson

INTRODUCTION

Military command and control technolagists are faced with a tremandous challenge.
With the increasing sophistication of wsapons systems and decreasing time frame for
making decisions, it is essential to provide the military commander better quality
information faster, even though manpower has been reduced by the ccaversion to
ali-volunteer forces. With today’s technology, messages can traverse several thousand
miles in fractions of a cecond, but hours are lost at either znd, both in entering the
message into the communications system and in delivering it to the man who can act on
it.

The 1A project is studying the application of on-line, interactive computer
technology to the military message handling problem and is preparing an operational
test. On the basis of the ARPANET message system experience, we are confident that
such a service has a high payoff to the mibtary. Not only can formal message
preparation and delivery hecome faster and more reliable, but the processing taciities
n: vwided can also be put to new use. For example, with such a service the status of a
message s automatically available at all stages from prepar-tion to delivery. Much
more detalled accounting and audiling is easy {o maintain, providing a better
understanding of the basic communication process. Entirely new facilities become
avallable as well: for example, using the message service to alert individual users
when certain events have occurred (e.g. “the message frory Capt. Jones that you
were expecting has arrived”). Automated suspense files, calen sars, etc., are also simple
to provide.

Perhaps most important contribution of such a system is that it makes available a
secure, informal (off-the-record) message facllity. This electronic memo rad is swift
and convenient to use and, unlike the telephone, does not require simultaneous attention
of sender and receiver.

INFORMATION AUTOMATION 43

The project is specifically directed to the military communication environment, and
even more specifically to nonexpert u ~rs. The most effective way to introduce such a
service into the military community is by means of an operational test at a military site,
which will serve a twofold purpose: It will demonstrate the utility of an on-line message
service in an environment credible and comprehensible to military planners, and aiiow
system builders to understand the impact of such a system on the user organization and
o evaluate the cost versus venefits of its various features.

BACKGROUND

Although the IA project actually began in the fall of 1973, its roots reach back to a
three-week study, conducted on behalf of ARPA, of the military comrunications on the
sland of Oahu [1]. This study was initiated at the request of the Secretary of Defense
for Telecommunications as a part of a Navy program called COTCO, whose mission was
to consoclidate and improve communications on Qahu. Untii ARPA’S involvement, COTCO
advocated conventional data processing solutions. The ISI report, which recommended a
complete island-wide interactive writer-to-reader message service elec.rically coupled
to AUTODIN (the military’s backbone communication system), was submitted by ARPA to
DoD, where it excited considerable interest but was generally regarded as too radical to
be included in a production system without a better appreciation of its cost and
benefits.

INFORMATION AUTOMATION PROJECT

Against this background the IA project was started at ISl in the fan of 1973 with a
twofold goal: 1) to develop the technology for providing on-line computer services
directly to users who are neither specialists in computer science nor specifically trained
operators and 2) to develop an on-line, interactive, writer-to-reader message service
for the military community. The two goals are in fact indivisible. The military action
officers who send and receive messages are not computer specialists. For the service
to be useful, an interface must be provided that knows a great deal about each
individual's habits, thus making his use of the service seem easy and natural to him.

Military Message Service

In the military, formal messages are archived for posterity, aleng with pertinent
signoff data. Reference 2 describes in some detail how formal messages are handled
today and how they are to be handled by the proposed 1A message service. The
concept is to put action officers directly on-line to a message service that provides
interactive assistance tor formal messages from the initial draft preparation through
review and rewriting (the process termed coordination), through transmission and
distribution to eventual recipients and finally to archival siirage. In addition, the A
message service will provide informal "off-the-record” communication between users, a

INFORMATION AUTOMATION 44

service now unavailable (except by telephone or personal contact) but considered very
valuable in accomplishing daily tasks.

Such an on-line message service, new to the military, allows coordination on draft
messages without requiring face-to-face meetings, and permits rapid and secure formal
or informal written communications. The anticipated benefits of this service are as
follows: easier and faster message preparation and delivery, improved efficiency of
action officers” time, better information dissemination, better understanding of
information flow, and reduction of clerical load.

While these benefits all seem worthwhile, there is skepticism about whether they
would in fact be realized. Before military decisionmakers are willing to invest in such a
new facility, they would like to know the service’s real value in an operational situation.
As mentioned in the introduction, the n.echanism planned to determine this value is a
formal test of the service in a working military environment, from which we hope to
learn what features are valuable, how the service is used, and how it affects the way
the user organization does its business. This information is essential for long-range
military communications planning and for proper implementation of production systems.

The need to conduct this test has focused the IA project on designing a service that
can be put into an actual military user environment. This focus requires a great deal of
attention to functional performance, user interface, reliability, security, and scalability.
This emphasis is required because current ARPA research products have not sufficiently
addressed these issues for operational military environments. Also, to maximize the
test results, the IA project has paid much attention to flexibility in introducing the
service to users aid in instrumentation for obtaining meaningful data about the effects
of the system on users.

Functional Performance

To be a success, an on-line message service must provide the improvements
inherent in automation without overly disrupting the traditional patterns and procedures
that, .hough not ideal, are known to work., The manual nature of today’s message
service is somewhat cumbersome, but it 1s extremely flexibie; each command or
organization is able to tailor its procedures to its own needs. One of the unique
characteristics of the IA message service is that it provides this tailorability.

To adequately support military message handling the orgamzational structure of the
user community must be reflected in this service. For example, the rules about who can
access what message files and who can release what messages must be carefully
modelled. By definition, formal military message traffic flows between commanders of
organizations, even though the messages nearly alwa:s originate and terminate at much
lower levels. This necessitates special “coordinaiion” or “staffing" procedures on
outgoing messages (which require approval up the entire chain of command) and
complicates the distribution of incoming messages. The IA military message service is
unique in its approach to these problems.

s Gkl i I i i b i i R A " = s . iﬂj

INFORMATION AUTOMATION 45

It is also necessary that the on-line service be easy to use. It is certainly easier to
type “"send for coordination” than to hand-carry a draft message around to each
coordinator. However, by automating this transmission we are faced with making the
use of terminals competitive with paper and pencil. Toward this end the IA project is
developing scanning and editing aids that currently do not exist. For instance, tc
facilitate integration of comments and changes from several coordinators, the service
offers the ability to compare two versions of the same paragraph on sepat ate windows
of the CRT screen, highlighting the differences by making the changed characters
brighter.

The proposed IA message service i1s divided into two stages: preparation and
delivery. The former stagse includes the creation of the draft message and the
coordination of this draft with other users until it is signed off for release. For this
stage the IA message service provides a special-purpose editing program which
understands message formats and checks that the contents of the various fields are
legitimate. The editor is structured so that a coordinator’s editing ot a message is
stored as a special change file rather than as actual modifications to the original.

The author of the draft message controls the sequence and timing of delivery ot the
draft to coordinators, The message can proceed serially or in parallel {(or any
combination of the two). The author can have the message returned to him after each
signoff {(so he can incorporate the changes), he can ask that he simply be notified after
each signoff, or he can let the coordination delivery proceed automatically.

Often a coordinator of a message wishes to obtain the opinions of others on his
staff before he signs off. The IA message service allows the coordinator to "delegate”
to as many people as he wishes the capability to comment and edit the message (each
delegate edits from the original and creates his own change file). If so inclined, the
coordinator may also delegate the signoff responsibility, but this is restricted to a single
delegate only. The message service may retain all of this delegation information for
audit purposes. During Phase 2 of the IA development (see the Project Plan subsection)
this delegation facility will be extended to permit a user to specify in advance the
criteria for selecting messages to be delegated to others. The service will then
automatically perform the delegation whenever a message meeting these criteria is
received.

This coordination process can be iterated as often as necessary, with each version
being coordinated independently. A major research goal of IA 1s to learn more about
the coordination process and about how to structure the computer-aided environment to
enhance the effectiveness of this coordination.

The delivery stage involves conveying the message to its ultimate recipients,
archiving it, plus providing aids for the user to sort his messages, scan them, and file
them for later retrieval. The first step in this process is to determine distribution for
the message. Because of the military policy that all formal traffic flows between
commanders of organizations, it is necessary {o employ complex procedures to
determine the real ultimate recipients. The IA message service extends the normal

P OWE oy

A e NKANLY G

en B el telA A 2k 22 MR

JREPHPFN

(R P

AL foigvos S vy

INFORMATION AUTOMATION 46

“one-pass” distribution algorithms provided in current AUTODIN terminals (e..., LDMX) to
allow each user to add his own personal distribution determination. A special form of
distribution determination provided by IA, called Guarding, allows a user to specify
criteria for messages that are to be routed to the first “on-line” user on the guard list.
This assures that incoming messages meeting these criteria will be delivered to a live
person who can act on it immediately.

A different form of special handling offered by IA is the alerting mechanism, which
allows users to specify criteria for messages that will cause immediate action on the
user’s screen when they are re.eived. This will notify the user of the event
immediately, if he is on-line, or as soon as he comes on, if the event occurred while he
was off-line.

Message selector criteria can also be applied to incoming messages to sort them into
"folders” for the user. This provides the electronic analog of file cabinets. Since the
message service can retrieve messages rapidly, these users’ folders actually store only
citations to messages, rather than the messages themselves, which limits the computer
storage required to easily manageabie size.

User Support

The ARPAMNET experience provides ample evidence that computer scientists can use
on-line systeis effectively with little or no formal training in their operation. There
are also many examples of systems used every day by nonspecialists who have had
intensive training (e.g., airline reservation clerks). To be etfective,however, a military
message service must be usable by non-computer people (action officers) with minimal
formal training. Few officers spend more than 10 percent of their time in
message-related functions; moreover, the present effort requires no specialized training.
No on-line message service will be used in the military 1If it is not virtually self-evident
and highly supportive whenever the user has any questions or difficulty. The IA
preject is focusing on this problem as a central research issue.

The approach chosen to provide the necessary support for the user who is not a
trained operator or a computer specialist 1s to interface him to the message service
through an “intelligent front-end process” which we call his "Agent.” This Agent makes
the service appear consistent to the user. It is designed to handle all control
procedures (e.g., editing, help, defaulting, erior handling, context mechanisms, etc.) in the
same place and therefore in the same way throughout all phases of the service. This is
a major source of difficulty in the current TENEX message facilities. The Agent and its
components are described in detail in Refs. 3, 4, and 5. Briefly, it consists of a
Command Language Processor, a User Monitor (with attendant background analysis
processes), and a Tutor.

Command Laenguage Processor (CLP). This serves as the intervreter for user
commands operating from a dynamic wnput string and provides input editing
functions and screen control. 7o support the neophyta, the CLP has a strong
emphasis on error detection, recovery, and correction. it also acts as the

N R PR S R e P s 1% R s ¥4 L T vosw T PO

o Ko 2RI

INFORMATION AUTOMATION 47

driver for the rest of the Agent, calling in the User Monitor and the Tutor
when appropriate. The CLP operation is affected by User Profile data which
provides information unique to each user.

User Monitor (UM) and Analysis Packages. The User Monitor collects data on
user performance and provides the User Profile data used by other parts of
the Agent (Tutor and CLP). Analysis programs process user performance data
to test hypotheses and modify the User Profile.

Tutor. This provides intelligent help to on-line users by explaining commands,
reporting errors, introducing new features, and providing reference
documentation. Tutor operation is also affected by the contents of the User
Profile.

The Agent is designed to collect specific data about the user’s use of the service, to
make certain analyses of that data and, on the basis of the resulls, to recommend
changes to the way the user deals with the service or the way the service looks to him.
After we have gamned actual user experience, we fully expect to have to change the
nature of the data collected, the way it is structured, and how it is analyzed. In this
process, however, we expect o learn a great deal about the critical parameters of a
man-machine interface and how to control them to maximize the user’s performance and
satisfaction.

As an initial effort in this area a pretest of three message service language
forms--keyword, positional, and Enghsh-like--has been prepared. The goal of this
pretest is to learn user preferences in language form in order to "normalize” the
languages used (i.e., put each language on an equal footing with regard to the users and
the tasks) for a later comparative test of user performance. For example, If the
keyword language form required the user to type some long and irrelevant keyword
each time a particular operator were needed, the user would be unduly prejudiced
against the keyword language form. The Agent is designed to support multiple
command language forms and individual variations of them. This facility will be
employed in conducting the comparative tests and will be available for use in the
operational tests thereafter.

Reliability

The IA project plans to make its message service reliable by making 1t a distributed
process across multiple host processors and by keeping redundant copies of the
: service's basic files dispersed among these hosts. [f any one host is down, any user
; can then still be served. Since the processes are distributed, a user does not need to
run on the machine which stores his files.

A R N PLATIT L AT

Cadbate: 2 oo ¥

in order to make this work, file naming conventions must be coordinated to incure
; system-wide uniqueness. In the proposed IA message service design there are three
distributed processes, ea.h of which controls a separate data base. The Coordination

L SR o dode
Fonlit s e e N e

INFORMATION AUTOMATION 48

Daemon controls all messages in preparation; the Transmission Daemon controls all
messages that have been rzleased; and the User Daemon controls all user personal data
files Every host involved in the service has a copy of each of these dazmons. When a
user logs on, he is assigned to a host by the User Daemon. That host’s daemons
retrieve his personal files and then start up a job for him. This user job talks to the
daemons for all its subsequent message file accesses. This distributed nature of the IA
message service with redundant file storage provides the robustness required for a
military environment.

Security

Another important requirement for this service is that it must meet military security
specifications. While there are some systems-level issues not addressed by this
project, the service is being designed to a consistent model of the necessary access
controls to satisfy this need. Verification that the program actually matches the
security model will be performed only at the top level.

Privacy (control of message access on criteria other than security level) 1s another
major concern in a message service. The principal difficulty here is in eliciting from the
military a reasonable statement of what the rules should be. "Need to know" is a highly
judgmental quality and very difficult to model. The IA project plans to embody access
control mechanisms general enough to be applied fo a broad set of models. When a
particular privacy model is elaborated, it should be easy to implement. Initially, the
service will support author-assigned access control at the message level.

Scalability

In the COYCU study it was igarned that on the average day on Oahu, 6,000 formal
AUTODIN messages are sent out and 15,000 messages are recetved. To insure that
received messages get to the appropriate people, an average of 40 copies are
distributed. The CINCPAC communication center devotes a 24-hour-a-day printing
press to this function. To handle traffic of this magnitude in an on-line system, it is
necessary to organize the messages as efficiently as possible. For exampls, when a
message is "delivered," instead of making a private copy for each recipient (as is done
with current ARPA message services), the IA system delivers a orief “citation” to the
message. The message itself is stored in two central locations {redundancy for
reliability). The user is then granted read-only access to one of these central copies
when he wishes to read its contents.

Cinue design decisions in the IA message service also reflect this concern for
scalability. The organization of user files 1s also done by a central process (User
Daemon), to compact them as much as possible. In this way, data relevant to many
users can be kept in the same TENEX directory rather than requiring a directory per
user. The daemons are distributed processes that operate across multiple hosts on the
network so that the service can grow in a straightforward way by expanding the subnet
{more nodes and more links) and adding more message processors.

ol

VR L T OB AR ST O

INFORMATION AUTOMATION 49

Test Objectives

Perhaps the most important aspect that distinguishes the IA project from previous
message service developments is that it 1s being designed from the ground up to be
used by the military in a test situation. The data collection and analysis being done by
the Agent to measure the users’ activity on the service is highly relevant to the test
objectives of the military (i.e., to understand the impact and utilization of the service).
Additional functional information (such as traffic, patterns, attributes of messages, etc.)
will be collected by the daemon processes as appropriate.

PROCRESS TO DATE

A year ago there were two projects at ISl that were relevant to the current IA
project. Command and Control Message Processing Technology (CCMPT) was identifying
research problems and opportunities for applicaticns for interactive message processing
services in the military environment. Information Automation (IA) was studying the
architecture for on-line message services for compuler-naive military users. In
September 1974, six reports (Refs. 2-7) were published which explained the IA hasic
design approach and some of the underlying philosophy. Reference 2 describes the
functional performance for an on-line military message service. References 3,4,5, and 7
describe the user support environment for such a system, including the Command
Language Processor (CLP), the Tutor, the Editor and a methodology for refining
command languages. Reference 6 covers executive system support required. Reflected
in these documents is the information gathered from many discussions with military
communications specialists at installations such as CINCPAC, NAVELEX, NAVCOSSACT,
Naval Research Laboratory, Naval Electronics Laboratory Command, MITRE, Army
Communications Command, Army Materiel Command, Air Force Logistics Command, Air
Force Communications Systems Command, and others. These reports have been useful
in communication with the ARPA research community about the basic problem area and
have served as guides to several ARPA contractors. They have also been a source of
teedback from the military community.

As the plans for conducting an operational test of military message processing on
Oahu began to take shape last fall, CCMPT and IA were merged into a single integrated
program focused on this test. An informal design report was produced for ARPA
review in January. This report describes the detalled design of the IA message service,
including such information as message representation and data formats. The design
called for implementation of the message service on a standard TENEX using a modern
CRT terminal. It was planned that the message access mechanism would be based on
the NLS routines being produced by Stanford Research Institute for use as a tool on
NSW.

Upon approval of th. design in March 1975, work began on implementation of this
message service. Since that time significant portions of the CLP and terminal interface

INFORMATION AUTOMATION 50

have been completed. Delays in production of the NLS routines for NSW forced a
reassessment of their utility to the IA program and in early May plans to use NLS were
dropped.

In the area of the user interface, the project has developed a command language
protocol analysis test to be applied to eventual users of the test message service as
described earlier. The purpose of the analysis is to provide the command language
designer the most representative language of each of several language forms tested.
This command language protocol analysis test has been conducted at ISl using IS! staff
as subjects, in order to evaluate the utility of the approach; Ref. 8 reports the test
findings. An improved version of the test now being developed will be used in testing
the ultimate military users.

In addition to designing the message service, the project has worked with ARPA,
NAVELEX, and CINCPAC to develop tentative plans for operational testing of the
interactive message service and for transferring the technology involved into the hands
of those people within the Navy who can use it to implement future systems. The test
plan involves running approximately 25 terminals connected to a message service on a
dedicated TENEX computer on the ARPANET. This test will be run in a system-high
security mode; that is, terminals will be restricted to a large controlled-access area
(blockhouse) and all users will be cleared to the highest classification of traffic handled.
The message service provided will have a connection to the LDMX at Camp Smith to
provide operational traffic. Efforts are under way to get active perticipation of
NAVCOSSACT personnel. The intent is to foster the technology transfer required for
optimum impact on the defense community. Effort is continuing to structure a test plan
to insure that major questions about the inpact and utility of interactive services will be
answered definitively.

PROJECT PLAN

The steps ahead for the IA project are to complele the implementation of the
design, test it on friendly users (making appropriate improvements), install it in an
operationzl environment, and conduct operational tests. This program requires several
phases of activity, as enumerated below.

Phase 1

Phase 1 will implement the Agent and the creation and coordination aspects of the
IA message service, providing a highly interactive, useful service on which to initially
test the concepts underlying the Agent and gain some valuable feedback from military
users on the system’s functional performance. This first phase will be implemented
first on a single processor and thus will not test the mechanisms for distributed
processing and backup files.

PRy SFS AN

INFORMATION AUTOMATION 51

This coordination service is intended to provide, as output, either standard ARPANET
mail service messages or properly formatted inpul to AUTODIN. Thus this service will
be useful in a controlled military environment or as a subsystem on TENEX on the
ARPANET. Since the Phase 1 product is a subsystem relying on other TENEX
subsystems for message delivery, reading, and archiving, this message service will not
yet have the single, consistent, homogeneous look to its users that is necessary for
success. However, Phase 1 will serve as a basis for an initial evaluation of this type of
service for the military. This service will be ready for initial testing in the first quarter
of calendar 1976.

Phase 2

The second phase of development will add to the service the processes associated
with delivery, reception, archiving, and retrieving of traffic. In addition, the system will
be extended to provide backup files and fully distributed daemon pracesses.

In Phase 2 the Agent development includes implementation of tutorials, more
complete tutor data bases, and more powerful CLP screen control. In addition, it covers
tailoring the service to the test environment and conducting user tests on the service
provided by Phase 1. The Functional Module will be extended to handle the formal
message reception features, providing automatic folder processing, delegation, and
alerts. The daemons will be made distributed processes with backup files. Phase 2 is
scheduled for completion by the fourth quarter of 1976.

Subsequent Phases

Phases have been identified for debugging and tuning and for the test itself.
Details of these phases will be established through coordination with the many parties
involved.

. e s

A -k eaar e

m—
o

N

INFORMATION AUTOMATION 52

REFERENCES
1. Ellis, T. O, Gallenson, L, Heafner, J. F,, Melvin, J. T., A4 Plan for Consolidation
and Automation of Military Telecommunications on Oahu, ISI/RR-73-12, May 1973.

2. Tugender, R, and D. R. Qestreicher, Basic Functional Capabilities for a Military
Message Processing Service, ISI/RR-74-23, May 1975.

3. Rothenberg, J. G, An Intelligent Tutor: On-line Documentation and Help for u
Military Message Service, ISI/RR-74-26, May 1975.

4. Heafner, J. F,, A Methodology for Selecting and Refining Man-Computer
Languages to Improve Users’ Performance, 1SI/RR-74-21, September 1974.

5. Abbott, R. J, A Command Language Processor for Flexible Interface Design,
ISI/RR-74-24, September 1974.

6. Mandell, R L., An Executive Design to Support Military Message Processing Under
TENEX, ISI/RR-74-25 (in progress).

7. Rothenberg, J. G, An Editor to Support Military Message Processing Personnel,
ISI/RR-74-27, June 1975.

8. Heafner, J. F, Protocol Analysis of Man-Computer Languages: Design and
Preliminary Findings, IS|/RR-75-34, July 1975.

Lt Cuzed v g A

R R RS SR RN T

TETANVE

o P

O S L R

[

53

NETWORK SECURE COMMUNICATION

Research Staff: Danny Cohen

Thomas L. Boynton
Stephen L. Casner
E. Randolph Cole
James Koda
Robert Parker
Paul Raveling
Dono Van-Mierop

Research Assistant: John K. Kastner

Support Staff: Neancy Dechter

INTRODUCTION

The major objective of ARPA’s Network Secure Communication (NSC) project is to
develop and demonstrate the feasibility of secure, high-quality, low-bandwidth,
real-tim , full-duplex (two-way) digital voice communications over packet-switched
computer communication networks. This kind of communication is a very high priority
military goal for all levels of command and control activities. In 1972 the House Special
Subcommittee on Defense Communications reported that the most prominent equipment
deficiency experienced in Vietnam was the lack of ability to encrypt voice transmissions.
ARPA’s NSC project will supply digitized speech which can be secured by existing
encryption devices.

The major goal of this research is to demonstrate a digital high-quality,
low-bandwidth, secure voice handling capability as part of the general military
requirement for worldwide secure voice communication, The project goals are to be
achieved within the context of operational military requirements. However, it is
expected that early use by the military will be or an experimental basis, t provide an
oppertunity to add system improvements unique to the military.

ISPs role in ARPA’s project is as follows:

o To continue developing the Network Voice Protocol required for communication
of coded speech over a packet-switched network in real time.

® To deveiop on-line voice conferencing capabilities.

R A A L RS DR Y Tk =3

PrRaT,

BT AL SO Y PR S E Iy v N S

s

TR TRy BGAT N

Er
43
vd

NETWORK SECURE COMMUNICATION 54

o To continue implementation of the PDP-11/5PS-41 system for real-time LPC
vocoding.

e To develop dynamic off-line voice systems for storage and retrieval of voice
files.

® To integrate a signals and voice input system, using the Voice Recognition
techniques to be developed by Lincoin Laboratory.

® To integrate an authentication and privacy mechanism to be developed by
Speech Communications Research Laboratory (SCRL).

RESEARCH APPROACH

Several different problems must be solved in order to advance the overall state of
the art of real-time speech communication. These problems range from acoustic
research into vocoding techniques to networking research for achieving the required

performance.

There is only one criterion for judging such systems, namely, how useful they are
for their users. Therefore, all the related efforts always begin wit’s the user. First,
the user interface (procedures) were designed, then the system nrotocols necessary to
support the user interface were designed, then the system to support these protocols
were designhed and implemented. This outside-in approach proves itself time and again
for most applications with a man-in-the-loop.

There is a definite correlation between compression and computation. The higher
the compression, the more computation required. Similarly, there is a connection
between quality and compression. The better the quality, the higher the bandwidth
required (assuming the same computation). There is also a three-way relation between
the network-related parameters: bandwidth, delay, and continuity.

One of the purposes of the research is to optimize simultaneously the speech
compression and the network performance required for real-time communication.

ISI conducted network-related research and built real-time systems, integrating
algorithms developed by other ARPA sites, such as Llincoln Laboratory, Speech
Communication Research Laboratory, Stanford Research Institute (SRI), and Bolt, Beranek

& Newman (BBN).

PROJECT GOALS

A prototype of a PDP-11/SPS-41 digital voice communications system was
implemented at ISl. The Network Secure Communication project at 1SI has developed
this system in order to demonstrate the feasibility of secure, high-quality,

Al S s 2 A S b el

PR AR RSt o

NETWORK SECURE COMMUNICATION 55

low-bandwidth digital voice communication in real time over a packet-switchea computer
communications network.

Another objective of the NSC project has.been to provide a framework within which
to do digital voice conferencing and to demonstrate a working conferencing system.
This is the logical extension of simple person-to-person voice communication; a
conferencing capability would greatly extend the usefulness of a secure digital voice
communication system.

CURRENT STATUS AND ACCOMPLISHMENTS
The Network Voice Proiocol (NVP)

ISl developed the NVP early in 1974. in August 1974 it was successfully used for
high rate real-time communication between ISI and Lincoln Laboratory using CVSD, and
in December a more expanded version ot NVP was successfully used for lower rate LPC
communication between Lincoin Laboratory and Culler-Harrison Inc.

NVP has some unique features which make it basically different from other existing
Host-to-Host protocols on the ARPANET.

NVP takes advantage of the properties of human speech, such as silence periods, in
a way which optimizes the communication by reducing the required bandwidth.

NVP is geared for operation in any packet-switched network rather than specifically
designed for the ARPANET.

NVP separates control from data in a way which allows interfacing of encryptien
devices for data only, without affecting control data which cannot be end-to-end
encrypted. Control issues like timing and order of arrival are separated in a way that
allows future network protocols (at the HOST/IMP level, like the Kahn-Cerf protocol) to
handle them. NVP can use both Type O messages (fully controlled, guaranteed,
synchronized, and sorted by the SUBMET) and Type 3 messages (which are not).

NVP is designed to trade reliability, if needed, tor higher bandwidth and lower
delays. Its operation never depends on the arrival of all the messages.

NVP 1s designed to separate vocoding-dependent issues from the
vocodint-independent ones. This allows easy incorporation of new vocoding techniques
as they become available. At present there are NVP interfaces for LPC and CVSD only.
NVP includes its own intial-connection procedure, which 1s different from, but similar to,
the standard "ICP." Its main objective is negotiation, a stage needed for defining the
format to be used later for data-transfer.

NVP allows systems with different levels of NVP implementation to be compatible if
the set of their mutually implemented features is found to be sufficient.

o

NETWORK SECURE COMMUNICATION 56

NVP allows any message (control or data) to be lost or delayed without catastrophic
effect on the communication.

NVP is designed to eliminate tne ‘ssibility that one system can tie up the
resources of another system unnecessarily.

A full description (down to the bit level) of NVP will be found in an ISI research
report (ISI/RR 75-39) to be published soon.

Linear Prediction Coding (LPC)

Virtually all of the work done by the NSC project has been aiong critical paths
leading to a low-rate, high-quality, reai-time LPC vocoder for digital speech
Tansmission.

The accomplishments most directly related to LFC are:

1. Creation of an efficient environment in which to create and run higiiy
complex, dynumic software systems (such as LPC) on the SPS-41.

2. Systems design of the LPC software for both the SPS-4] and the PDP-11,
and implementation of the SPS-41 LPC analysis and ‘he entire PDP-11
LPC system.

3. Overcoming the difficulties which arose from the low reliability of the SPS
hardware, and helping the SPS Corporation in debugging their hardware.
This led to our ability to run the SPS system in a relatively reliable
fashion.

Tkhe software environment for LPC. Very little software was deiivered for the
SPS-41. What software existed was designed for applications in which a single
program was loaded into the machine and run indefinitely. LPC required the ability io
write many SPS program modules, test them separately, and then integrate them into a
system in which program modules are loaded into the SPS, run to completion, and
dynamically overlaid with the next module needed. The final LPC system requires many
such modules.

The following software was written or modified for this purpose:

® The SPS-41 assembler (BOXASM) was modifiad exiensively. BOXASM is
written in FORTRAN and runs on the PDP-10.

@ An Automatic Reformatter (ARF) was specified by IS! and written by ISI
and BBN. The purpose of ARF is to transform the output of BOXASM, an
ASCll character fiie, into another ASCIl character file which is then input
to a PDP-11 assembler or cross-assembler. Thus an SPS program is

AL 6 I AN e Tt

PRNICPEETPY e

SR A S LY T

LR A Aan L w oy

P g ety

« TR ATPAT G,

NETWORK SECURE CCa.* NICATION 57

transformed into data blocks which can be loaded into PDP-11 memory for
dynamic loading and execution. ARF is written in FORTRAN for the
POP-10.

® The PDP-11 cross-assembler MACN11, which runs on the PDP-10, was
modified extensively for this and other purposes.

® The operating system ELF provided network access for the PDP-11
support program for LPC. Because ELF was in an "almost finished” state,
extensive work was required to make it functional for our application. In
particular, considerable time was involved in bringing the virtual memory
capabilities of ELF to operational status.

® An executive program (EXEC) was written to permit dyramic loading and
execution of SPS program modules. The EXEC is an SPS-41 prograrn
which resides permanently in the SPS and controls its operation.
Commands for the EXEC are stored in PDP-11 memory locations, along
with SPS-41 program modules which the EXEC loads into the SPS and
starts. The EXEC has facilities to detect when each SFS program module
is done, and can even load the next program module while the present
module is running.

o FT11/FT10 is a user/server pair of programs which run in the PDP-11
and PDP-10, respectively, to transfer files between the two machines
using a 2400 baud line. F.e transfer is required because source files are
maintained and assembled on the PDP-10.

The SPS-41/PDP-11 LPC system. The SPS-41 LPC system consists of an analyzer
written by ISl and a synthesizer written by SRI. The analyzer consists of a series of
seven SPS-41 program modules, and the synthesizer censists of one large program
module. The SPS-41 LPC analysis 1s made up of four basic modules, sume of which are
used more than once in each analysis frame. They are as follows:

® A windowing, autocorrelation, ard normalization module, used once during
coefficient analysis and twice during SIFT pitch extraction

® A matrix inversion module, written at BBN, used once during coefficient
analysis and once during SIFT pitch extraction.

® A low-pass filter and downsample module for SIFT pitch extraction.
o An inverse filter (convolution) module for SIFT pitch extraction.

Block diagrams of the $PS-41 analysis and synthesis systems are shown in Figures
6.1 and 6.2.

£ Namin g e

‘moyf s15€70u0 Oy 1$-SdS 1'9 4mB14

4Ingsa
WS
4401 4401 WIH osv 98
O%y *++ Oz 685+ 1o ve -+ Te 1 --- Oz
4 AZTTVIION
(v) O/V
MOGNIM
. { ‘ 4414 2g € xd
¥EA01d 221 TVIION | <ET> S80V LS
Avad (oy) o/V pchgey P qATO0S 0
a |
HOLId OGN ASUAANI S NOSNIAZT <+« undd S
<11>| ddd <ET> OVO1 <11> 1114 <€1> %108 <> ﬂmzmm Aﬁvnmn,ﬁm
i
Ygax Ugax
WS Uaax WS uagx
$ X 91] %9 X 91
% ¥ Ox
Iilnll T' -Uw
4 (posnun) + saTdues »
P oo mo : : WIH oSV D goseds 1 it ¢ :
W rl'—.H+N.u al1-¥x| 02 1+ ¥ le—3- _v *38 O0Te - Te 0Tz =" Oa uﬂaaHl—ﬂ °31g
E ” 3 — =+t
O |
2 ugix | ¢ u
2 ns U X STY10
€1 %91 1
o
o B <ST>
& (4] 38 :
Q Coe L : 42T TVIRION a/v
- ettt 4 L4 : <I191>
P (epooud) 2|2t Ty -+ Oy 1 3s (o1) O/V
S 11-dad ol 0x]0x Tl \
v : AOANIM
W NOTIVINJHOD anos Lo
HOI1d m.ZOmZHEq_.L EvicRcttll oy B
<11-ddd> HOlId ZmMad woxd <11> dAT0S <IT1> OVMIH

"moyf s153Y ks g7 [p-84S 2'9 aunBry

e

Ws ur Yggy Ug ®s ut Yaqy Ugay
9 X971 21 X971 J
- N sn3ielg WAT | W+9T1 dSI - ’ snljeas
L E:
g — M snjelg : . ISI ——1—) snjels
— . L : .. . : : .
: svTdues :) »" AT LT 98I : : . : : : : :
T yosads e h snjelg 51 1€ DSV .w snleig 3
& ™ p9Z2TSayluisg T
— snje3g dI} €9 9401 Wi i eijyLatgfures sniels
.H 3
m S : 10
W 1y
= <> :
s (@poo3(Qq)
W v/d HINXS TdIN g 11-ddd moxg
O <LT'9T> <01> <9>
WRU k
5]
w
w
4
[0 4
o
S
T
w
Z

P R “ -

S0 S i SR s e st BT PATI ST Ao anivat

NETWORK SECURE COMMUNICATION 60

The PDP-11 LPC system has the followirg components (not including the ISI-modified
ELF operating system):

® A controlier module, which supervises the PDP-11 LPC process and
handles communications to and from the ARPANET via the NVP.

® A transmitter module, which takes parcels of compressed speech data
from the SPS-41 LPC analyzer, encodes them (in the information-theory
sense), and formats them for transmission as ARPANET messages. The
encoding is done by a special subroutine which can be changed to
accommodate varwous types of vocoders.

® A receiver module, which takes incoming speech data from the ARPANET,
decodes them, and passes them to tne SPS-41 LPC synthesizer. The
separate decoding subroutine can also be changed to allow vocoders
other than LPC to be used. This module was written at SRI.

it is important to note that the PDP-11 LPC system is quite flexible, and not limited
only to LPC; only the encoder and decoder subroutines are specific to LPC. This allows
other vocoding methods to be implemented with relative simplicity.

Continuously-Variable Slope Delta Modulation (CVSD)

Centinuously-Variable Slope Delta Modulation (CVSD) is a speech-oriented
bandwidth compression techmque which compresses speech to within the range of 10 to
20 Kbps, with less quality than LPC. However, the computation required for CVSD is
only a small fraction of that required for LPC. Therefore, CVSD) can be easily
performed by either software or hardware.

Procurement bids for hardware CVSD vocoders were issued in 1974 according to
specifications issued by Lincoin Laboratory, and several units were purchased from
General Atronics. The CVSD hardware devices will play a major refe in the nitial
conferencing experiments and in other systems which require more than one ‘rocoder
per site, s'~ce the cost and complexity of any LPC implementation makes the use of
more than one LPC vocoder per site prohibitive.

CVSD software network communications experiment. 10 April 1974, iSI had
implemented an off-line simulation of CVSD on the SPS-41. By June, tSI had designed
and implemented a lerge and complex CVSD program for the SPS-41 which would allow
on-line communication over the ARPANET. This program was formerly one of the most
complex ever run on the SPS-41, using eight of the machine’s sixteen input-output
nrocessor channels,

A PDP-11 system to handle CVSD communications between the SPS-41 and the
ARPANET was desigried and implemented in parallel with the SPS CVSD effort. This
PDP-11 system was designed to run under the ELF operating system for the POP-11.

In early August (within three weeks atter the necessary ELF factlities were completed

]
4
3
!
H

RS T YIPORTER

NETWORK SECURE COMMUNICATION 61

by SCRL) the on-line CVSD system was brought up and experiments in digital speech
communication with Lincoln Laboratory were begun between 1SPs SPS-41/PDP-11
sysiem and Lincoin’s FDP/TX-2 system at a data rate of 10,000 bps. The first Network
Voice Protocol (NVP) was used for these experiments. This was the first use of a
packet -switched network for digital voice communication. The experiments were
cnmpleted in October 1974,

CVSD harduare. In January 1975 five of the hardware CVSD devices built by
General Atronics from specifications by Lincoln Laboratory were delivered to I1SI. These
devices are capable of CVSD at data rates from 8 Kbps to 18 Kbps. It was immediately
apparent that although the devices themselves performed well, the interface provided to
connect the devices to the PDP-11 would cause an impossible load on the PDP-11. This
initiated the development of an improved interface, the PB11-A. The PBl1-A allows
serial communication between the PDP-11 and the CVSD boxes, over long cables, making
it possible to use them away from the computer room. It combines the data to (and
from) all the boxes so that the computer is interrupted only once every 16-bit period
for all boxes rather than once for each bit from each box. The PB11-A also solves a
synchronization problem by providing a single clock signal for all the CVSD boxes.

Support Software

A very large portion of the work required for a large system such as LPC or CVSD
is spent in writing support software of all types. The following is a list of the major
items of support software written by ISi:

PDP-10 programs.

® ARF: The Automatic Reformatter for SPS-41 nrograms, ac described in the LPC
section.

® FT10: The PDP-10 side of a file transfer program which transmits files from
PDP-10 disk to PDP-11 disk and vice versa.

e |ICOPY: The predecessor of FT10/FT1l. Transfers load modules to the
PDP-11.

® MACGEN: A text generator for easy creation and formatting of PDP-11
assembly language (MACRO-11) programs.

® DUMPLIL; An ELF core dump formatter.
SPS programs.
® EXEC: The SPS executive described in the LPC section.

® ASFLG: A test program to test the SPS AS flag, which did not work as described
in the documentation.

PPN SN

NETWORK SECURE COMMUNICATION 62

® ECNS: A set of 6 programs to test SPS ECNs. Supplied to all network SPS
users.

o D2AX: A test program for the SPS D-to-A and A-to-D converters.
® DCVSD: A duai port CVSD program.

® LPC: The SPS implementation of linear precictive coding (LPC) itself. It includes
the following program modules:

- ADDA: The A-to-D and D-to-A handler.
- FILDS: Low pass filter and downsample module.

- HIWAC: Windowed double-precision autocorrelation module for
coefficient analysis,

- SOLVE: Robinson-Levinson recursive matrix solution module for
coefficient analysis.

- AC85: Windowed double-precision autocorrelation module for pitch
analysis.

- SOL4: Robinson-Levinson recursive matrix solution module for pitch
analysis.

~ FILT: Inverse filter module for pitch analysis.

~ LOAC: A second windowed double-precision autocorrelation module for
pitch analysis.

- PPP: A pitch peak picker.
® XLPC: A test program for testing LPC under controlied conditions.
® CLPC: A second test program for testing LPC under controlled conditions.
DOS programs.

® LOADI2, LOADSP, LOADER, LOADNC, and LOADAL: Various loaders for the
PDOP-11.

® FILSTT: A PDP-11 fife status package.

PR R

AL

e FT1l1: The PDP-11 half of the file transfer package.

o i i bt P .)
o o Lowo

NETWORK SECURE COMMUNICATION

53

EXECLD: Loads in the SPS overlay exec from disk (used as a command extension
to SPUD).

LDSPS: Sets the various channels of the SPS to a predefined set of addresses.
STCHAN: Starts the SPS (using a particular sequence needed by the SPS).

INITAL: Sets the various channels of the SPS using LDSPS to start an initialize
program (INIT).

INIT: Pulses a channel to set high address bits.

ENCODE: Encodes LPC parcel information into a network message for
transmission,

SPTEST: Runs ENCODE and DECODE back-to-back so that local tests of LPC may
be made without the ARPA network (used for debugging).

LPCTBL: Is the table used by ENCODE and DECODE for compression.

ELF programs.

IKINT: A module which allows the ELF user to field interrupts.

IKUSBO: A program that allows ELF users to bootstrap load modules into user
space.

BEEBUG: A powerful debugger which runs in ELF user mode on a Beehive
terminal.

TCP: A TENEX compatibility package which provides |/O capabilities for ELF
programs somewhat like those in TENEX.

MASTER: A mini~executive to cortrol CVSD running under ELF.

ELF modules (components of the ELF operating system) for ELF-11.

KDIMP: The IMP uriver module.

KDPRI1: The paper tape reader driver module.
KDRKO5: The RKOS disk driver module.

KTMP: The programmable ciock driver.

KTML: The line clock driver.

e A ek 4 wenscosmitdiucleldiis, s

o iy e oy s

REOPPPNP L WOT VI T)

L

NETWORK SECURE COMMUNICATION 64

® KTMI: The real-time clock driver.
® NIO: The ELF network 1/O driver.
ELF modules for ELF-I.

ELFNIO: The ELF-I network I/0 driver.

® ELFCLK: The ELF-i driver for the PDP-11 clock.
® ELFTC: ISl modified to add simple FTP features.
® ELFRK: A disk driver for the simple ELF FTP features.

Software extensively modified by ISI.

® MACNL!: The PDP-10 cross-assembler for the PDP-11. Several new features
were implemented and all known bugs fixed.

e [MPTST: The PDP-11 IMP interface test exercise program.
e [MPOIA: The PDP-11 IMP interface diagnostic program.

e SPUD: The PDP-11 program which exercises single programs running in the
SPS-41.

SPS Status

Hardware debugging. The SPS-41 was installed in late 1973. Programming began
in April 1974, and a two-month period of hardware debugging followed in April and
May. During that period numerous bad components and broken wires and one design
error were found and replaced or corrected. The SP$-41 generally ran dependably

until September.

In September, the ISI SPS-41 was retrofitted for dual-port memory. Cual-port
memory was necessary for LPC in order to allow the PDP-11 to compute while the
SPS-41] is accessing memory. After work was begun on LPC programs which use the
dual-port memory extensively, a large number of hardware design problems were found
in the area of the dual-port interface.

Throughout the process of debugging the SPS machines, IS has served as the
central clearinghouse for information about SPS hardware bugs. In addition, ISI people
have spent large amounts of their time to isolate the hardware bugs and write test and

diagnostic programs.

To date ISl has generated many SPS programs which serve as effective diagnostic
and test programs, and made these programs available to other NSC group sites. SRI,

s
s T

NETWORK SECURE COMMUNICATION 65

SCRL, BBN, LL, and SDC have used some of these programs as part of their acceptance
tests.

SPS hardware status. At the moment it 1s not clear how many bugs, if any, remain
in the SPS-41°s dual-port interface. SPS conducted a design review during early 1975
and failed to uncover any major problem. However, field debugging mostly by the
designer of the hardware reveaied too long signal paths which led to a series of ECNs,
ranging from replacing 74XX ICs by 74HXX and 74SXX ICs, to operation with memory
slowed down to 800 nanosecords (instead of 600 nanoseconds). Up until the 1ssue of
this report, the SPS hardware still was not operating in a reliable mode.

2 ki ik i skl i i - —

SPECIAL PROJECTS

Research Staff: Stephen D. Crocker

Ronald L. Currier
Norton R. Greenfeld
Dono van-Mierop

INTRODUCTION

Since its inception, IS has undertaken several hardware development efforts in
support of research requirements or to demonstrate a capability for a recognized DoD
application. As reported in Ref. I, one of the most significant of these projects is the
development and use of the Xerox Graphics Printer (XGP), a high-quality document
printing capability in the form of a network terminal.

Two XGP systems have been installed, one at ARPA and one at ISI. They provide
high-quality on-line hard copy with proportional spacing of characters according to
width, and use of muitiple fonts. This report is an example of the XGP’s capabilities.

The hardware components of the XGP systems at both ARPA and ISl consist of a
modified Xerax machine interfaced to a PDP-11/40 with 32K words of core and 256K
words of disk, interfaced via a 2300 baud line to the ARPA TIP, which is driven over the
ARPANET by any TENEX system, particularly OFFICE-1, ISI, and ISIB. See Fig. 7.1.

The software components of the XGP system consist of the following:
® A number of ‘character set descriptions which give the
sorrespondence between character codes and arrays of points,
® XOFF, an elaboration of RUNOFF which accepts a text file, pertorms

tilling and format calculations, and creates a file with text and control
codes,

@ XLIST, a transmission program which accepts either normal text files
or files produ.ed from XOFF, and transmits them to the PDP-11 over
the ARPANET,

ke ~
i —
A

R A

AR

it gt i

SPECIAL PROJECTS 67

® A PDP-11 program which receives text over the ARPANET, justifies
lines, converts character codes to dot arrays, and drives the XGP.

The software in use was adapted from software written at Carnegie-Mellon University.
The primary changes have been to use ARPANET communication facilities to replace
CMU’s hardwire connection between the PDP-10 and the PDP-11, and to use TENEX file
name conventions,

Photo by Marti Coale

Figure 7.1 Xerox Graphics Printer and its processor.

sl ki ot it oo v -y
= Leaxusoriiisteli e iane o N -
—_—

s e

B DT

Ptcd Rl Ul 12 g

VT T T

FOATRCR LY

SPECIAL PROJECTS 68

SYSTEM OPERATION
Operationally, the process of printing a file on the XGP has three distinct stages:

o Document preparation.
o XGP preparation.
o Text shipment and printing.

Document Preparation

Text is entered into the computer using any of several text editors. The user may
include within the text various directives to control justification, filling, font changes,
and so forth. If such directives are included, the user must run the program XOFF to
convert his file to a form acceptable to XLIST.

XGP Preparation

The XLIST program is used to communicate with the PDP-11. The XGP has many
parameters, such as page size, margins, and character sets. Currently, XOFF can insert
commands in the document file to control any of these parameters except the shipping
of character sets. Only some of the character sets are stored permanently on the
PDP-11°s disk. Character sets required during the printing process which are not on
the disk must be transmitied to the PDP-11 before the document is transmitted.
Transmission of character sets is usually initiated by issuing commands to XLIST.

Text Shipment and Printing

The XLIST function "Perform Print" sends a file to the PDP-11 and telis it to start
printing. The program in the PDP-11 copies the document to its disk and then outputs
it to the XGP, converting character codes to point matrices and expanding spaces to
justity lines.

OPERATIONAL EXPERIENCE

The XGP systems have been used extensively since their installation. Although
users are generally able to use these systems effectively, two major defects were
noted: slow speed and difficulty of use.

SPECIAL PROJECTS 69

Speed

Under the current design, files are copied completely over the ARPANET to the
PDP-11 disk before printing is started. The printing process is governed by a paper
speed of 0.67 inches per second, so that it takes 165 seconds to produce an 11l-inch
page. A page of orinted output corresponds to about 2000 8-bit characters or 16,000
bits. Thus the printing process operates at about one kilobit-per-second. However,
measurements of the current software show that transmission over the ARPANET
operates in a range 200 to 800 bits-per-second, so that between 55 percent and 85
percent of the total time required to print a document is spent purely in its transmission
over the network. By comparison, transmission from ISIB to the IS! XGP ove: a direct,
non-network connection tends to operate in the 2000 to 5000 bit-per-second range, so
that not more than 337 of the throughput time is due to transmission. Similarly, file
transfers over the network which do not involve the XGP also operate well in excess of
2000 baud--usually closer to 7000 baud and sometimes at 25,000 baud.

A short investigation was conducted to find the location of the bottleneck. First,
the physical connection between the TIP and the PDP~11 was increased from 2400 baud
to 9600 baud, but no increase in speed resulted. 3econd, XLIST’s communication
strategy was changed. XLIST presently uses pseudo-teletypes connected to network
connections, and it is known that this scheme is much slower, although more flexible,
than using direct network connections, An experimental version of XLIST which used
direct network connections was tested, and the throughput was raised to just under
1000 bits per second. Finally, the TIP buffer space was doubled and no increase in
throughput resulted.

With the exception of the marginal increase in speed when using direct network
connections, the low throughput does not seem correctable within the present hardware
framework. In particular, the fact that regular file transfers between two hosts run an
order of magnitude faster than our connection through the TIP strongly suggests that
the TIP is incapable of supporting high throughput to a terminal connection. As a
separate confirmation, the TIP is known to allocate only one message at a time on each
of its connections, thus insuring long delays between messages and consequently low
throughput.

SPECIAL PROJECTS 70

Ease of Use

There are two major aspects of the current system design which make it much
harder to use than necessary.

1. Users must command XLIST to send to the PDP-If character seis which are
required during the printing process, although they have already had to
specify the same information once in the preparation of the text file.

2. Users must wait for the completion of the transmission of their files to
the PDP-11; if they try some other action, the transmission is aborted.
Since the user generally has no further need to interact with the XGP
system once he has started the transmission of his document, it would be
far better to transmit and print files as a background task.

CURRENT ACTIVITIES

On the basis of the accumulated experience and analysis of the problems, work was
undertaken to modify the XGP systems to provide higher throughput and easier use.
The steps being taken are as follows:

1. The connection between the PDP-11 and the TIP is being changed to use
a host interface. Corresponding changes in the software in the PDP-11
will also be made.

2. Printing will be overlapped with transmission to achieve maximum
throughput.

3. Shipment of character sets to the PDP-11 will be performed
automatically.

4. The core allocation scheme is being revised to work with more than two
fonts.

5. Defaults are being established so that the user only has to supply the
name of the file to be printed.

pagis, 4503y

6. A background process much like the LT server is being developed.

o o 2o 3 LS

L A et s sy

SPECIAL PROJECTS 71

Connection of the PDP-11 as o Host

In order to support high-speed network transmission, the hardware of the PDP-11 is
being augmented with a host interface and enough memory to support both the ELF
operating system and the XGP program. The total core on each PDP-11 will be 64K
instead of the present 32K. Memory mapping hardware is also being added.

The current software, which is based on CMU's PDP-11 XGP program, will be
replaced by a combination of VM ELF and MIT’s XGP program. The VM ELF system will
provide network and disk /O and address space management. MIT’s XGP software is a
much improved version of CMU’s software, providing the same functions of converting
character codes to raster lines suitable for transmissicis to the XGP hardware.

Overlap of printing with transmission

Text received from the ARPANET will be buffered onto the disk. Printing will be
initiated when text for a small number of complete pages has been received. If
transmission is slowed after printing has started and the printing process actually
catches up to the transmission, printing will be interrupted at the next page boundary.
Printing will b~ resumed wnen recomputation of the throughput again shows it to be
safe.

In normal cases, throughput of a few kilobits-per-second is ail that is required to
keep up with the printing process. Even when TENEX is heavily loaded, it should be
able to accomplish this. Buffering is continuous across file boundaries, so printing
should be continuous as long as there are files to print.

Automation of shipment of character sets

The background TENEX process will accept commands from the text file which ships
character sets to the PDP-11. Corresponding changes to XOFF to generate commands
have been made in part and will be finished. Character set names will be standardized,
and the sets resident on the PDP-11 disk will be protected. Other character sets will
be shipped automati.al. + before each file is printed, and cleared afterwards.

o

A

Vo X B s

e e

PN A W WA,

PO

SPECIAL PROJECTS 72

Revision of core allocation

The present core allocation scheme in the PDP-11 pr¢ .m places each new font in
progressively increzsing memory locations. Eventually, memory space 1s exhausted and
the printing process is aborted. Since only two fonts are active at any one time, it is
possible to reuse the space released by previously used fonts. A strategy to reuse the
core space is being designed and implemented.

Establishment of defaults for XLIST and the PDP-11

Defaults for paper size, margins, character sets, and tab stops will be established so
that line printer-type fiies will print as much as possible as they would on the printer.

Queueing of files

The functions of the current XLIST program will be divided into two parts. One part
can interact with the user to accept filenames and destinations. 1t will copy the file into
an XGP-PRINTER directory. The second part will be a set of permanent background
tasks which will attempt to connect to the XGP’s and will send files stored in the
XGP-PRINTER directory to the designated XGP. There will be one background task for
each destination XGP accessible to the host.

On the theory that anything queued for printing must eventually be printed, no
priority or interrupt mechanism is being designed. Some thought will be given to this
as we progress, however, since connecting the PDP-11 as a host would permit
centralized queueing control and status reporting.

SCHEDULE

It is expected that these changes will be complete and the new system operational
in the fall of 1975.

REFERENCE

1. Annual Technical Report, May 1973 - May 1974, USC/Information Sciences
institute, ISI/SR-74-2, 1974,

73

ARPANET TENEX SERVICE

System Staff: Marion McKinley Jr.

Alan E. Algustyniak
R. Jacque Bruninga
George W. Dietrich
CGlen W. Gauthier
Donald R. Lovelace
Raymond L. Mason
William H. Moore
Vernon W. Reynolds
Dale S. Russell

Support Staff: Ralph W. Caldwell
Wanda N. Canillas
Deale M. Chase
Oralio E. Garzu
Delia A. Heilig
Kyle P. Lemmons
Jack M. Mann
Rennie Simpson
Deborah C. Williams

INTRODUCTION

The IS ARPANET TENEX service facility is operated as a research and service center
in support of a broad set of ARPA projects. It currently services more than 800 users,
95 percent of whom access the facilities via the ARPANET from lccations extending from
London, England to Hawaii. All facilities systems are available to all users, whether they
are connected through the ARPANET either locaily or remotely.

The facility consists of four Digital Equipment Corporation (DEC) PDP-10 central
processors (one Ki-10 and three KA-10s), Bolt Beranek and Newman (BBN) virtual
memory paging boxes, large-capacity memories, on-line swapping and file storage, and
associated peripherals {see Figure 8.1). All systems presently run under control of the
TENEX operating system (developed by Bolt Beranek and Newman), which supports s
wide variety of simultaneous users.

HARDW ARE

New hardware acquired in the past year as part of a general upgrading effort
includes two additional DEC PDP-10 central processors and BBN virtual memory paging
boxes, an additional 768K words of Ampex high-speed memory, te.x CALCOMF 230 disk

PP A

R

(ot i v LRI s A

o

ARPANET TENEX SERVICE 74

drives that have more than doubled the previous on-line swapping and file storage
capabilities, two additional Systems Concepts channels and a new CALCOMP 1040A/345
magnetic tape system. Figure 8.2 shows the current IS| service facility configuration.
Note that none of the central processors, the KA-10s nor the K!-10, operate in dual
processor mode. Instead, the main goal of having the several systems is to provide a
significant increase in the availability of the ISI primary machine, system A. Thus if one
of the systems designated as a primary machine crashes, or is down for
hardware/software maintenance or development, then one of the other systems may be
started as a primary machine and service continued after a brief (normaily 15 minutes)
interruption to switch the file storage media.

Also included within the TENEX service facility are one BBN H-516 Interface
Message Processor (IMP), one BBN H-316 Terminal Interface Processor (TiP), one DEC
PDP-11/40 and Xerox Graphics Printer (XGP), one DEC PDP-11/45 and SPS-41 Signal
Processirg System (configured as a speech processor), one Mulii-Lingual Processor
(MLP-900) and several associated peripheral devices such as disk, drums, memory,
special IS| developed interfaces, TTY’s etc.

SOFTW ARE

The demand for ISI's computer cycles far exceeded the avalable supply for most of
the year. Means were needed to reduce the load on the system and to restrict access
of designated users, as specified by ARPA and S| management. During the year a
concentrated effort was made to insure that all of the (S| TENEX service machines
provided the same level of systems software, i.e., pie slice scheduler, file management,
etc,, and that all subsystems were updated to correspond to the latest release. This is
a continuing effort and once accomplished will .. easier ongoing software
maintenance of the ISI TENEX service systems. We also have provided load-leveling
across the machine in conjunction with IPTO to assure reasonable resporse and greatly
expanded system utilization.

SUPPORT PERSONNEL

To properly support the new load of four complete TENEX systems 15| has hired
additional systems programmers, a complete new staff of computer service engineers in
order to perform our own hardware maintenance, and additiona! full-time and part-time
operators. ISl presently provides seven-day-a-week, twenty-four-hour-a-day
operator, software, and hardware support of the TENEX service facility. At least one
operator is physically on-site at all iimes, and the systems programmers and computer
service engineers are either physically on-site or are scheduled for one-hour on-call
service. The addition of the computer service engineers to our staff now provides ISi
the capability of performing complete repair, maintenance, and service ot all computers
and related peripheral equipment within the fadility, thus eiiminaling sei vice caitiacts
with several different equioment vendurs. See Fig. 8.3.

s dadalakien Sl

S AT Y T

Composite photoyraph

Figure 81

75

ARPANET TENEX SERVICE

T

TRy TR

TENTTRINT

b

b.l Composit. photograph of computer room.

3

Ll A

kA

o

Photo by Mart Coale

Lodg gy <yns

RPN S,

A System

ISIACPU
KA-10

l 245,760 PCP-10 woras memory

+ pSeC

ios SA-10
Cnarnel

*

ceCiaPt
Control

161 Cistant

e ARPANET
intersace

Disk
2-chanrel
Control

79,564,160 PCR- 10

wores fue slorage

NG SHTPNG
OB Mnmam

CIRITR T LT T T]

ARPA

7-¢ra
'l&pchi’

50) 3

9-cnannm
Tape Orives
oo} foo
MAGTAPL
2-charre. g2x.2
dWIE
Control

C System

BBN Distant
ARPANET
Intersece

O

CECTAPE

Control

5iCCPY
Kn-10

79,964,160 PCr-iC
worcs fue storage
and swapping

=
UhSK
| 2-channes

Controi

\ 3 . -
524,298 POP- 10 words raeror

|
|
el
|

ST R E E T TT T R T T TTHATH T T

SA-1C

~arnel

i bbeC

Figure 8.2 Dwagram of ISI ARPANET TINEX serui

ARPALET

Speech
Processor
System
| U T

ISi Local
ARPANET

intereace

AYela

SEC Lccal W
ARPANET
interface

—1

Uribus
) L. - I uu!‘ c omen

SPS-41 Signal
Processor

TN LD I L BT TR T DT L

PEU HINIETLUR TR L T o

EL

R NIRRT

73 ey

HRIINIHEInT

E
K

/

i o

; ARPANET TENEX SERVICE 76

B System

524,258 PCP- 10 woras memary

E
. SA-10
Cnannel
£
] 8] A
9-channet 7-crannel L g
; TapeCrives Tape Drive Disk ~EaT AR
. ‘ 2-channel Lot "A?‘
£ 00] 100] Control Coniro: e
» 0 |
3 0 1 20K'3 iSI Distant
: ARPANET (2) x
‘ 79,964,160 °CP- 10 Interface g
3 MAGTAFE 2x2 MAGTAPE words fie storage H
4 2-channel Switch 2-channel 300 SW 3ping £
3 Contrei Contral T g
3 ' PT g
4 Control H
3 £
H
H
i | £
4 H Catasets & §
i ; Terrunals (32)
illllllIIIMllIIlIllIIIlllIlllllll"ll""lmlwm
3 D System
i UL DD
V203 z
Y R £ 79,964,160PCFP-10
K H-218 x IR
3 1P I viorcs hie sterage 51 oo
> L 3 - Y o'
3 | i and 3waping ARPANET 2
vatazets o Interface
Termmals(63) i r 1
ARPANLES ARPANET S [
¢
{ Speech Cisk R
Processor XGP 2-charnel D,E‘"TAP‘ :
? System System Control Contrl i 3
2 WRETEEG T TR AT " Wmmmﬂ F 4 T -:
= =
1 I1S] Local BEC coca]
4 ARPANET APPANFT J b
inter‘ace interface 1 0 168 ‘SIDCPU 2
3 SA-10 KA-10 3
3 Channel
3 3 POP-11/30 |
. POP-11/45 Z
{ =] ‘]
E PCP-11 ;
‘ ‘ XGP inturf ce MLP-50% B8N Pager X
£] SPS-4i Signal ‘ i 7
§ Processor g
§ i H 4
: i i 262,144 PDP- 10 word, rremory ;
g ; H i L usec i
3 3] g g i
' v % 3 E 1
NI R 3“llIIIIl|IIIIIIllIl|lIlIl|lllll||ml|||l|||||"llllllll“l““||||||||||||||§ §III|Illl|||||Il||||l|||l|||ll|||”I|"“||lllll||'llllllllllllIII||||lllIllllllI||||||II||IIII|I|IIIIl|Illlllllllllllll||||ll|lIIIIIIII|NII|"|II|I|||||§ !
5
hcgram of ISI ARFANUT TENEX service facility. ;

<
’ ARPANET TENEX SERVICE 77

PERFORMANCE STUDIES

s T NN PO AT

During the past year it was observed that as the load average of a particuiar
system increased, the overall performance and response time of the system drastically
deteriorated. Furthermore, upon being assigned the task of providing NLS service on
one of our ISIC-KA-TENEX machines, it became quite obvious that (because of the large
working set of pages required by NLS) IS! could not provide high-quality service on this
machine as it was then configured. It was then decided to undertake performance
studies and measurements on a system configured with twize the memory capacity
(512K words) of any existing TENEX system. To facilitate these measurements, both
hardware and software modifications to the former system were required, and an
additional 256K words of memory had to be obtained. Once this was accomplished
performance measurements were made by IS! in-house staff and by members of the NLS
support group at Stanford Research institute. AW performance measurements on this
system were compared to identical measurements made on several other operational
TENEX systems via the ARPANET. After all results were compiled and evaluated (and
after many congratulatory comments from on-line users) it was concluded that a 512K
word TENEX system is the best cost-performance system. ISl presently provides the
only 512K word TENEX service to ARPA network users on system C. It is believed that
this is a first for a DEC KA-10 processor to run an operational system configured with
more than 266K words of memory.

Photo by Marti Coale

Figure 8.3 Computer room operator console area.

R ea s f o oL s al

e A CAREMEoN WIS

ARPANET TENEX SERVICE 78

RELIABILITY

To provide required hardware/software preventive andfor corrective maintenance
of the equipment, ISl as in the past wili continue scheduling each of the TENEX systems
as "out of service” (unavailabie to users) for seven contiguous hours each week. The
remaining 161 hours of each week are intended to be devoted entirely (1007) to user
service. It is expected that the actual long-term up-time attained during the past year
will continue to be greater than 987 (on an 161-hour-per-week basis) for each system.

LOCAL PROJECT SUPPORT

The TENEX facility has been utilized extensive! in support of iocal projects. The
s*aff makes use of all of the available standard subsystems (e.g., editors, compilers,
assemblers, and utilities). Additionally, staff members have written subsystems and
utilities in support of their own projects. The faciiity also supports less freguently
used subsystems at the special request of users (e.g.,, PDP-11 cross assemblers and the
DECUS Scientific Subroutine Package).

Monitor modifications to support the MLP-900 have been develcped and verified,
These modifications allow basic processor-to-processor communication through both the
input/output (1/0) and memory buses.

Bl Y

‘nsad ek 22 o) w S dd D ING L il sgb e

SRPPP)

PUBLICATIONS

Anderson, Robert H., Programmable Automation: The Future of Computers in
Manufacturing, IS|/RR-73-2, March 1973; also appeared in Datamation, Vol. 18,
No. 12, December 1972, pp. 46-52.

---, and Nake M. Kamrany, Advanced Computer-based Manufacturing Systems for
Defense Needs, 1SI/RR-73-10, September 1973,

Baizer, Robert M., Automatic Programming, ISI/RR-73-1 (draft only).
~=-, Human Use of World Knowledge, |S|/RR-73-7, March 1974.

---, Language-Independent Programmer’s Interface, ISI/RR-73-15, March 1974;
also appeared in AFIPS Conference Proceedings, Vol. 43, AFIPS Press, Moritvale,
N J, 1974,

---, Norton R. Greenfeld, Martin J. Kay, William C. Mann, Walter R. Ryder, David
Wiiczynski, and Albert L. Zobrist, Domain-Independent Automatic Programming,
ISI/RR-73-14, March 1974; also appeared in Proceedings of the International
Federation of Information Processing Crngress, 1974,

Bisbey, Richard L., and Gerald J. Popek, Emcapsulation: An Approach to
Operating System Security, IS|/RR-73-17, December 1973.

Eilis, Thomas Q., Louis Galienson, John F. Heafner, and John T. Melvin, A Plan fer
Consolidation and Automation of Militery Telecommunications oa Qahu,
ISi/RR-73-12, June 1973.

Kamrany, Nake M, A Preliminary Analysis of the Economic Impact of
Programmable Automation Upon Discrete Manufacturing Products, ISI/RR-73-4,
October 1973.

London, Ralph L., Shigeru lIgarashi, and David C. Luckham, Automatic Program
Verification I: A Logical Basis and Its Implementation, ISI/RR-73-11, May
1973; also appeared in Artificial Inirlligence Memo 2000, Stanford University,
May 1973.

PP TR

B a” . (aZ)

80

Oestreicher, Donald R. A Microprogramming Language for the MLP-900,
ISI/RR-73-8, June 1973; also appeared in the Proceedings of the ACM Sigplan
Sigmicro Interface Mesting, New York, May 30-June 1, 1973.

Richardson, Leroy, PRIM Overview, 1S|/RR-74-19, February 1974.

Heafner, John F., A Methodology for Selecting and Refining Man-Computer
Languages to Improve User’s Performance, ISI/RR-74-21, September 1974.

Good, Donald |, Ralph L. London, and W. W. Bledsoe, An Interactive Program
Verification System, ISI|/RR-74-22, November 1974.

Tugender, Ronald, and Donald R. Qestreicher, Basic F: unctional Capabilities for a
Military Message Processing Service, IS|/RR-74-23, May 1975.

Abbott, Russell J., A Command Language Processor for Flexible Interface Design,
ISI/RR-74-24, February 1975.

Rothenberg, Jeff, An Intelligent Tutor: On-Line Documentation and Help for A
Military Message Service, ISI/RR-74-26, May 1975.

---, An Editor to Support Military Message Processing Personnel, IS1/RR~74-27,
June 1975.

Carlstedt, Jim, Richard L. Bisbey Il, and Gerald J. Popck, Pattern-Directed
Protection Evaluation, ISI/RR-75-31, June 1975.

Heafner, John F., Protocol Analysis of Man-Computer Languages: Design and
Preliminary Findings, |S!/RR-75-34, July 1975.

TECHNICAL MANUALS AND SPECIAL REPORTS
Annual Technical Report, May 1972 - May 1973, 151/SR-73-1, September 1973.

A Research Program in the Field of Computer Technology, Annual 1ochnical
Report, May 1973 - May 1974, 1SI/SR-74-2, July 1974.

Gallenson, Louis, Joe! Goldberg, Ray Mason, Donald Oestreicher, Leroy Richardson,
PRIM User’s Manual, IS|/TM-75-1, April 1975.

il WP N
kil - el SN O i o _

July

August

September

October

December

January

81

COLLOQUIA

John Pickens, The PLATO System and the PLATO Terminal
Bill Mann, ISl, Multi-Stream Editor Design

Jim Levin, UCSD, Aspects of Diagnosis

John Burger, SDC, Conceptual Processing of English

Richard Hart, University of Connecticut, A System for Answering the
Questions of Beginning Lisp Students

Warren Teitelman, PARC, New Adastions to Lisp
Boh Balzer, iSi, AP at IBM
Larry Fagan, IS, Modifications to the Verification System

Ron Tugender, 1S, XED..Or Happiness 1s a Warm Text Editor That
Cares

Jim King, IBM, A New Approach tc Program Testing

Carl Hewitt, MIT, The Programmer’s Apprentice

Sue Gerhart, Duke University, Test Data Selection

J. T. Schwartz, Courant institute, Au omatic Data Structure Choice

Jerry Sheiton, University of Wisconsin, A Practical Model for
Programming Language Semantics

Jim Levin, ISl, Fisher’s Theory of Control Structure

TR PSR O

———————
Nl ARSI NTE: R R L T e e

- RS
- . Y
4 Ak Saadac

82

February Jim Carlisle, ISI, Human Communication in Teleconferencing

Jim Moore, IS, Systematic Methods for QObserving and Encoding
Group Interactions

Jim Carlisle, iSl, Applications and Taxonomy of Teleconferencing
March Steven Boies, iBM, Speech Filing Systems

John Gould, 1BM, Psychoiogical Studying of Program Querying by
Non-Programmers

Larry Roberts, Telnet, Teinet’s Pians

Eric J. Neuhold, University of Stuttgart, On Correctress Proofs for
Command Programs

Giorgio P. Ingargiola, Caitecn, Towards a System with Specialized
Programming Knowiedge

Jerome Elkind, PARC, Review of Current PARC Research
Larry Milier, iSl, Mathematical Pattern Recognition
David Patterson, UCLA, Verification of Microprograms
April Jim Carlisle, 1Sf, Human Communication in Teleconferencing
Dave Fisher, institu'e for Defense Analyses, A Time Linear Bounded
Work Space Copying Algoriihm/Current Progress on the Defimtion

of a Common DoD Higher Oraer Language

Richard Johnsson, Carnegie-Meiion University, Register Aliocation
Optimization

o

Phillip Mason, Carnegte-Meuon University, The Design of Prograns
Asynchronous Multiprocessors

Sabihde e gy i

Axel Van Lamsweerde, MBLE Research Labs, Brussels, Corractness of

Sk

Parallel Processes

ot vt

A

g el

L% prcs
ey

S

do

R BT o d ar O ph i s e

83

May Hanan Samet, Stanford Al Lab, Automatically Proving the Correctness
of Optimized Code

Bill Mann, ISI, Recent Progress of Dialogue Modelling

Mark Stickel, Carnegie Mellon University, Incompleteness Aspects of
Artifical Intelligence Languages

Bill Marin, ISl, Why Things are So Bad for the Computer-Naive User
Stephen N. Zilles, IBM, Data Algebra

James Griesmer, IBM Yorktown Heights, The SCRATCHPAD System
for Symbolic Mathematical Con putation

June Bill Wuif, Carnegie-Mellon University, The ALPHARD Programming
Language

Dave Musser, ISl, An Algebraic Evaluator for Conditional Expressions

P ENR ALt A P

h 2 R RS

s ttrm i bran 2D

A L A b

-

84

DOCTORAL THESES

Completed

John F. Heafner, Design of Application-oriented Languages by Protocal Anclysis, 1975

Robert W. Lingard, /1 Representation for Sc aantic [nformation Within an
Inference-making Computer Program, 1975

David Wilczynski, /1 Process Elaboration Formalism for Program Writing and /inalysis,
1975

Martin D. Yonke, A Knowledgeable Lenguage-Independent System jor Program
Construction and Modification, 1975

In Progress

Donald S. Lynn, Automatic Program Verification: Compiler Proofs

- e wSe i A R TR o g el RS2 i L.

